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The power to question is the basis of all human progress.
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Abstract

In this thesis we present a novel approach for generating natural language questions, using
factual information from a knowledge graph and automatically assessing their difficulty.
Our work elicits a further utilization of the knowledge captured in knowledge graphs that
could find applications in research, education and leisure. In general, coming up with
question manually can be a resource consuming endeavor. An automatic approach can
therefore provide an alternative that substantially reduces the required effort. Established
methods for question generation have used document corpora as their main source of
information. However, the utilization of knowledge graphs for this purpose has received
far less attention. Furthermore, to the best of our knowledge, no previous work has

examined question difficulty in the context of question generation.

We specify a framework for a system staged in quiz setting that can test the domain
knowledge of players. The framework is implemented as an end-to-end system that expects
a human to specify a topic and a difficulty level. The resulting output is a question in
natural language, that abides the input criteria. The challenges we address along the
way include the principled selection of the contents of the question, the verbalization of
these contents into natural language, and the creation of an automated question difficulty
estimation scheme. We empirically show the effectiveness of our approach and conduct
user studies to demonstrate the correlation between our automated difficulty judgments

and those made by human annotators.
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Chapter 1

Introduction

1.1 Motivation

A considerable amount of research has been invested into the extraction of factual
knowledge from unstructured web resources. These efforts resulted in the creation of
knowledge graphs, which provide this information in a machine-interpretable format.
Among these are DBpedia, Freebase, and YAGO, which capture world knowledge in a
broad range of domains. Given this topical diversity, there is great potential for the
creation of a system that can facilitate this knowledge for educational purposes. As part
of the learning process, the system could generate questions of a certain topic that is
adequate to the learner’s information need and expertise level. By using automatically
generated questions as a medium for knowledge acquisition, a novel utilization for

knowledge graphs could be created.

When crafting new questions it would be intriguing to study their properties. A property
that comes to mind immediately is question difficulty. Even though difficulty depends
on multiple factors of the individual who is supposed to answer the question, there is
potential to inspect the characteristics of questions that influence difficulty positively
or negatively. For example, consider the questions Who created the painting Portrait of
a Musician? and Who created the painting Mona Lisa? Unless one is an Lenoardo da
Vinci expert, it is very hard to relate him to the painting Portrait of a Musician. On the
other hand, when talking about the creator of Mona Lisa, da Vinci comes to mind more
effortlessly. If it could formally be captured what makes the former question harder than
the other, this notion of difficulty could be integrated in a system to enable it making

difficulty estimates.

There are multiple key-applications that could benefit from a system that automatically

generates questions with difficulty estimates. As in the beginning, one field of application

1



2 Chapter 1 Introduction

could be in an educational setting, such as the automatic generation of tests and exams to
measure the learning success of students. Another application is in professional education
settings, such as the training of employees based on structured data about products,
customers, or an organization. Furthermore, question generation could be of great use in
the field of fraud detection on crowdsourcing platforms, e.g., Amazon Mechanical Turk.
Since the correct answer to each question is known beforehand, it would be possible to
discriminate between users who just click through the data and users who choose answers
that are correct or closely related to the correct answer. Finally, the large number of
meaningful queries that are generated by such a system could be used to drive natural

language generation research, which focuses on questions.

In recent years, machine-interpretable knowledge resources have been used to auto-
matically answer natural language questions on various domains. The most prominent
example is the IBM Watson system [1] that participated in the popular TV-quiz-show
Jeopardy! There, the system was able to beat two of the most successful human com-
petitors in the show’s history. However, in this work we address the reverse problem
of generating natural language questions from knowledge graphs. Similar to the IBM
Jeopardy! challenge, we stage our problem in the setting of a quiz game. Thus, our main
objective is to “come up” with a natural language quiz question for a specific topic (e.g.,

Entertainment) and a specific difficulty (e.g., easy or hard).

1.2 Problem Definition

A main goal for the this thesis is to leverage the structured information from the knowledge
graph to craft meaningful questions. Therefore, the task comprises the selection of the
question’s content, meaning which clues are contained in the question, and the question’s
answer. We decided to choose a structural query representation as the preliminary
formulation of the question. Using this representation of the query enables us to develop
a method to verbalize it into natural language, which is required for users to interpret
the system’s output. In addition to the crafting the question, we investigated the notion
of question difficulty. In general question difficulty is subjective, since it depends on the
individual who is supposed to answer the question. Thus, a further goal is to find a way
to standardize the notion of difficulty and enable the system to automatically judge a

question’s difficulty.
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1.3 Contributions

As stated above, the challenges we address along the way include the generation of the
contents of the question, the verbalization of these contents for humans and the judgment
of question difficulty. Correspondingly, our contributions fall into the following research

areas:

e Question Generation: We propose a novel approach to generate a question, which
has a unique answer, using semantic information from the knowledge graph. Our
approach uses a SPARQL query as an intermediate representation of the question,

and for checking if it has a unique answer.

e Query Verbalization: We elaborate on a pattern-based technique for verbalizing
SPARQL queries, using lexical resources. The resulting natural language mimics
the style of Jeopardy! clues. To cater to verbalization variety, we expanded the
standard set of paraphrases for relations and created a method to distinguish

important types for an entity.

e Question Difficulty Estimation: We designed, implemented and evaluated a ques-
tion difficulty classifier trained on Jeopardy! data. The classifier’s features are
based on statistics computed from the knowledge graph and Wikipedia. With
empirical studies and a human experiment, we were able to show that we achieve
good performance on our training data (66% correctly classified) and that human
evaluators moderately agree with our difficulty estimates in terms of relative and

absolute difficulty judgments.

1.4 Outline of the Thesis

The remainder of this thesis is structured as follows. In Chapter 2, we provide technical
background on knowledge bases and the Semantic Web. Moreover, we give a short
introduction to machine learning and regression problems. We close the background
chapter with a discussion about techniques to process large datasets. In Chapter 3,
we present a summary of previous work in the areas of question generation, difficulty
estimation of text and questions, verbalization techniques and work that focuses on the
analysis of Jeopardy! questions. In the subsequent chapter, we present our approach for
generating questions using a knowledge graph (Chapter 4). This section is divided by
the problem domains of question generation, query verbalization and difficulty estimation.
Chapter 5 gives a high-level overview of the system and discusses the implementation of

the prototype. The implementation comprises a web interface for generating questions,
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which was part of the poster presentation at the 2015 World Wide Web Conference in
Florence, Italy. Another web interface was created as part of a user study to analyze
the performance of the difficulty classifier. In Chapter 6, we empirically evaluate the
performance of our difficulty estimation scheme on test data. In addition to the study,
we perform an extensive user experiment to evaluate our agreement with human question
difficulty judges. The closing chapter concludes the thesis and gives an outlook on future

work.



Chapter 2

Technical Background

This chapter describes background knowledge that is necessary to further understand the
concepts and algorithms introduced in this thesis. Section 2.1 introduces the semantic
web framework and some of its relevant components. Section 2.2 gives an introduction
to knowledge bases and presents two particular instances that form the data backbone
of our system. Section 2.3 describes machine learning and the sub-task of regression
analysis. Special focus is cast on logistic regression and model validation for classifiers.
The final Section 2.4 elaborates on the MapReduce programming model and introduces

two state-of-the-art systems based on MapReduce.

2.1 Semantic Web

The semantic web - also known as the web of data - was standardized by the World
Wide Web consortium to extend the World Wide Web (WWW). It “provides a common
framework that allows data to be shared and reused across application, enterprise, and
community boundaries” [2]. Berners-Lee et al. [3] envisioned the semantic web as the
future of the World Wide Web and the next step of its evolution. They state that the
goal of the semantic web is to “bring structure to the meaningful content of web pages”,
therefore making it machine-interpretable. The structure is achieved by embedding
machine-readable metadata into a web page, which enables automated agents to make
sense of the information and perform tasks on behalf of users. The format of the metadata
is described by a set of standards. The standards relevant for this thesis are: URI which
identifies an abstract or physical resource, RDF which is used to describe properties of
resources and SPARQL to formulate queries over these properties. The following sub

sections will elaborate on these standards in more detail.
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2.1.1 URI

A Unified Resource Identifier (URI) uniquely identifies a physical or abstract resource
and is represented as a string of characters. It consists of a hierarchical sequence of
components which are referred to as the scheme, authority, path, query, and fragment.

Masinter et al. [4] define the components of an URI as follows:

o scheme: determines how the URI needs to be interpreted (e.g. HTTP)
o authority: indicates the responsibility of a certain party for this URI (e.g. a host)

e path: contains hierarchical data to identify the resource within the scope of the

URI’s scheme and naming authority
e query: provides non-hierarchical information to further identify the resource

e fragment: enables indirect identification of a secondary resource within the resource

itself.

Their work also gives an example for an URI and its components:

foo://example.com:8042/over/there?name=ferret#nose

N/ N\ _____ /N __ /N ___ / \__/
I I I I I
scheme authority path query  fragment
2.1.2 RDF

The Resource Description Framework (RDF) is used to describe properties of resources.
The data model provided by RDF describes these properties in the form of subject-
predicate-object triples. The subject is the resource that is being described. The object
can be another resource or a fixed value, called literal (e.g., an integer). The predicate
indicates the kind of the relation between the subject and the object and is represented
using a property (e.g., the property rdf :type indicates that a resource is an instance of
a class). A set of these triples form a labeled, directed multigraph that can be queried

using the SPARQL query language (Section 2.1.3).

The framework also provides the possibility to use namespaces to represent common URI
prefixes in a more compact way. For example,

using the notation @prefix wiki: http://en.wikipedia.org/wiki/,

the URI http://en.wikipedia.org/wiki/Alan_Turing
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’ subject \ predicate object
Alan_Turing worksAt University_of_Cambridge
Alan_Turing livesIn United_Kingdom
Robin_Grandy hasAcademicAdvisor | Alan_Turing
Robin_Grandy livesIn United_Kingdom
University_of_Cambridge | isLocatedIn United_Kingdom

Table 2.1: Example RDF graph in triple representation

Robin_ Grandy }&’ United_ Kingdom ‘

hasAcademicAdvisor livesl isLocatedIn

Alan_ Turing

Figure 2.1: Example RDF graph from Table 2.1 in graphical representation

results in the much shorter wiki:Alan_Turing. An example of a RDF graph in triple
representation can seen in Table 2.1 (prefixes have been omitted). Figure 2.1 depicts the

graphical representation of the example RDF graph.

2.1.3 SPARQL

The SPARQL Protocol and Query Language (SPARQL) can be used to retrieve or ma-
nipulate data in the RDF graph. Prud’hommeaux and Seaborne [5] state that “SPARQL
contains capabilities for querying [...] graph patterns along with their conjunctions and
disjunctions. [...] The results of SPARQL queries can be results sets or RDF graphs.”
Conjunctions are expressed by the use of common variables and are denoted by a leading
question mark. Disjunctions provide the capability to retrieve a matching subgraph if
at least one of multiple graph patterns matches. In SPARQL a disjunction is expressed
using the UNION keyword.

An example query, for the RDF graph given in Table 2.1, can be found in Figure 2.2.
The query roughly translates to Who lives in the United Kingdom and works at a place
that is located in the United Kingdom. The sole result for the query is the resource
yago:Alan_Turing. In this example only one person matches the given criteria which
showcases something that is true in general: No knowledge base can be complete. Figure
2.3 depicts the graph pattern with variables ?p and 7u that is matched against the RDF
graph.
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@prefix yago:http://yago-knowledge.org/resource/

SELECT 7p WHERE {
?p yago:livesIn yago:United_Kingdom .
?p yago:worksAt 7u .
?u yago:isLocatedIn yago:United_Kingdom

Figure 2.2: Example SPARQL query

’ United_ Kingdom ‘

lives] isLocatedIn

worksAt .

Figure 2.3: Graph pattern of example query

subject predicate object

soccer_player | rdfs:subClass0f | player

Ronaldo rdf:type soccer_player

Ronaldo playsFor Barcelona Football Club

Table 2.2: SPO triples of knowledge base relations

2.2 Knowledge Bases

A knowledge base is a, centrally accessible, aggregation of information. For example, a
public library, a domain specific database or an online encyclopedia, such as Wikipedia,
can all be generally regarded as knowledge bases [6]. In recent years the term has
been used especially to refer to a database that stores information in an ontological
representation. These knowledge bases store knowledge about classes and their relations
(e.g., soccer_player is a subclass of player) and combine them with instance-level
knowledge (e.g., Ronaldo is a soccer_player). In addition to instance-class affiliations,
they store information about the relations between entities (e.g., Ronaldo plays for
Barcelona_Football_Club). Table 2.2 shows these relations as SPO triples in a knowl-
edge base. Subclass-class relation are denoted with rdfs:subClassOf and type relations

are denoted with rdf:type.

Knowledge bases serve different purposes across various domains. They can contain lexical
information (e.g., Wordnet [7]), which is utilized in the field of linguistics. They can
contain common sense knowledge (e.g., WebChild [8]), which can be used for reasoning
and question answering in artificial intelligence. Knowledge bases that contain very

broad knowledge and are not restricted to a particular domain are called general-purpose
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knowledge bases. Examples for these systems comprise YAGO [9], Freebase [10], DBpedia
[11] and many others.

The Linked Open Data Project was created as an effort to establish a connection between
these different systems. As stated in [12], its purpose is to “connect related data
that wasn’t previously linked, or using the Web to lower the barriers to linking data
currently linked using other methods”. The main idea is that two entities from two
different knowledge bases which refer to the same physical entity can be connected with
the owl:sameAs link. Using this method it can be expressed that the entity for Alan
Turing in Freebase: http://www.freebase.com/m/0n00 is the same as the YAGO entity
http://yago-knowledge.org/resource/Alan_Turing.

2.2.1 Wikipedia

Wikipedia is a non-profit, free internet encyclopedia and is the result of collaborative
work of more than 24 million volunteers. Started in January 2001, Wikipedia has grown
continuously until reaching almost 5,000,000 English articles in 2015. As of November
2014, Wikipedia has articles in 288 Languages and about 69,000 active editors [13].
The encyclopedia is built on an open concept where originally every user, registered or
not, could contribute by adding or editing articles. Over time this openness had to be
constrained when the massive growth and popularity of the website attracted vandalism.

As of today only registered users can add or edit articles that are not specially protected.

Wikipedia plays an important role as a data source when constructing knowledge bases.
Its large amount of structured data, such as info boxes and category pages, can be utilized
to extract clean and comprehensive facts about entities and their relations. By making
use of semantic patterns mentions of entities can be spotted in unstructured text and
used as evidence in disambiguation tasks. The underlying link structure, which expresses
which articles are connected, can be exploited to gain valuable information about the

entities that belong to the corresponding article.

2.2.2 WordNet

WordNet, as presented in Miller [7], is a lexical knowledge base that defines semantic
relations between nouns, verbs, adjectives, and adverbs. These relations include synonymy
and hyponymy. Synonymy makes it possible to group words into synonym sets (called
synsets), where each synset expresses a distinct concept, or word sense. For example, the

noun bank can be associated with multiple synsets: (1) “a building in which the business
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of banking transacted”, (2) “sloping land (especially the slope beside a body of water)”,

etc. In this thesis we exploit synsets to find synonymous words for types (Section 4.2.3).

Additionally, WordNet defines a hyponymy relation between nouns that organizes the
meanings into a hierarchical structure. For example, the noun pairs maple and tree form a
sub-class class relationship, since maple is a more precise variant of a tree. Yago (Section

2.2.3) makes use of the hyponymy relation when constructing the class taxonomy.

2.2.3 YAGO

As already mentioned, YAGO is a general-purpose ontology which contains world-
knowledge of more than 4 million entities and has more than 120 million facts about
these entities. Manual verification confirmed an accuracy of more than 95% which makes
its quality comparable to an encyclopedia [9]. The second version of YAGO, presented in
Hoffart et al. [14], has facts and events anchored in time and space. These events have
been automatically extracted from various web resources, namely: Wikipedia, Geonames

and WordNet.

In YAGO, Wikipedia pages are represented as entities and the entity’s classes are retrieved
from Wikipedia categories. The classes from Wikipedia are then intertwined with the
WordNet class hierarchy to form a rich class taxonomy. The taxonomy captures how
different classes are associated to each other. On the top level is owl:Thing, which all
classes are subclass of. The further one descends in the hierarchy the more specific the

classes become.

YAGO complies with the RDF standard and therefore stores its facts as subject-predicate-
object (SPO) triples. In YAGO-terminology resources are known as entities whereas
predicates are known as relations. Therefore, the expression of two entities forming a
certain relation with each other is called a fact. An example of a fact with two entities

stating that Alan Turing works at the University of Cambridge is expressed in YAGO as:
yago:Alan_Turing yago:worksAt yago:University_of_Cambridge

An example where an entity and a literal form a fact is expressed as:
yago:Alan_Turing yago:wasBornOnDate yago:1912-06-23

Additionally, entities are associated with one or more classes. This is expressed using the
rdf :type relation. Classes in YAGO can be either Wikipedia classes, which is denoted
by the prefix wikicat, or they can be WordNet classes, which is denoted by the prefix
wordnet. For example the fact that Alan Turing is an English computer scientist is

denoted as follows:
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yago:Alan_Turing rdf:type yago:wikicat_English_computer_scientists

It has to be noted that only the immediate Wikipedia class memberships are considered.
All super-classes of English_computer_scientists are not explicitly captured in YAGO.

However, they can be derived from the class taxonomy.

2.2.4 AIDA

AIDA [15] is a framework for entity linking in natural language text or tables. Entity
linking is the task of finding entity mentions, resolving their ambiguity and linking them
to a known knowledge base identifier. AIDA maps mentions of ambiguous names onto
canonical entities (e.g., individual people or places) that are registered in the YAGO
knowledge base. This is done by harnessing context from knowledge bases in combination
with the utilization of prior approaches. These approaches make use of “three measures:
the prior probability of an entity being mentioned, the similarity between the contexts
of a mention and a candidate entity, as well as the coherence among candidate entities
for all mentions together”. Using these metrics the system generates a dense subgraph

which determines the best entity-mention mapping.

2.3 Machine Learning

Machine learning is a sub-field in computer science that explores algorithms that are able
learn from a given training data set and use this learned “knowledge” to make predictions
on unseen data. A similar definition of machine learning is given by Flach [16] where it
is stated that “Machine learning is the systematic study of algorithms and systems that

improve their knowledge or performance with experience.”

According to Russell and Norvig [17], machine learning can be categorized into three
broad learning tasks. In supervised learning, when training the system, the desired output
for a given input is known and the system tries to derive a general rule that maps input
of the training data to the output. In contrast to supervised learning, the input data is
not labeled in unsupervised learning and therefore the system has to discover a hidden
structure in the data independently. In reinforcement learning the system tries to reach
a given goal without any external re-assurance if it has come closer or further from the
goal. The only feedback that the system receives is whether it has reached the goal, or

not, when arriving at a terminal state.
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Apart from the learning task, machine learning systems can be further categorized

depending on the output they produce. Bishop [18] identifies the following categories:

o C(lassification: The input data can be grouped into two or more classes. To achieve
this, the classifier has to be trained beforehand and the system has to learn a
model that enables it to map unseen inputs to one of these classes. In the case only
two classes exist, the classifier is called binary, if more than two classes exist the

classifier is called dichotomous.

e Regression: Here the outcome is a continuous value as opposed to a discrete class

in the classification task.

o Clustering: In this task, similar to classification, we try to group the data into
multiple classes but with the significant difference that these classes are not known
beforehand.

e Density Estimation: Given the input data, the system tries to find an unknown

probability density function that the data underlies.

e Dimensionality Reduction: Given input data with high dimensionality, the system

maps the input a representation in lower dimensional space.

Following Flach [16], there are three main components for machine learning: tasks,
features, and models. A task refers to the high-level problem that is being solved, e.g.
distinguish genuine and spam email. Whereas a feature is a set of descriptors for an
object that is being classified, e.g. “Number of characters in an email”. The model is an
mathematical representation of the relationship of the features with the class output, e.g.
linear regression model. After choosing the model type, a learning algorithm is required

that uses training data to build the model.

The most prominent machine learning method in this thesis is classification. As stated
above, in this method the system tries to find the most suitable class label, given a
set of observations. In Figure 2.4 the data flow of the classification task is depicted.
The process starts on the right-hand side of the diagram. There, feature extraction is
performed on the training data. The output of the training data is then used as input for
the learning algorithm, which trains the mathematical model. After the model is trained,
feature extraction is also performed on the unseen data. Using the trained model, the
classifier can finally use the output of the features to classify the unseen data. A common
example for such as system is a spam mail classifier which uses different observations in
the email text or the email meta-data to decide if an email is spam or ham. The training

data to this classifier is a set of hand-labeled emails. Using the input, the classifier can
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Unseen Training
Data Data

Feature Extraction Feature Extraction

! — !

Classifier Learning Algorithm

Classified
Data

Figure 2.4: Data flow of a classification task in machine learning

then build a mathematical model which makes it possible for unseen mail to predict
whether it is spam or ham. This training can be interpreted as the machine’s experience.

Thus, the more training data is available, the better the classifier performs.

2.3.1 Regression Analysis

To give a general introduction to all above mentioned machine learning problems and
methods is beyond of the scope of this thesis. We therefore focus on a sub-task of machine
learning called regression analysis. In regression analysis we try to model the relationship
between a dependent variable (the “outcome” or “class”) and multiple independent
variables (often called “predictors”, “attributes” or “features”)!. Regression analysis is

therefore especially useful when the classes and features are numeric.

!Because of the interchangeability of these terms we will strictly use the terms “class” and “features”
in the course of this thesis which are also most commonly used in machine learning literature.
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2.3.2 Linear Regression

Regression analysis can be best understood when looking at the linear regression model.
Linear regression is the standard model that can be used if the class and features are
numeric. The intuition behind the method is to express the class as a weighted linear

combination of the features, as follows:

9= Bo+ Pix1 + Bax2 + ... + BnaN (2.1)

where 7 is the class value that is being predicted, ; the i** feature weight and z; the i**
feature value, for all features 1...IN. To calculate these weights we make use of training
data, which consist of labeled training instances®. Let (i) denote the i*" instance we

predict the output value as follows, where m(()i) is always set to one:

. . . . N .
Boa) + Bral) + Bax) + ...+ Bl = 3 gjal? (2.2)
j

After obtaining the prediction, it is compared to the actual value of the class. The
regression method now minimizes the difference between the predicted and the actual
value by adjusting the weights ;. This is done by minimizing the square of these

differences (or errors) which can be expressed as the following equation:

n

N .
PCRED LI DR (23
j=0

=1

where y() is the actual class value of instance i, for all instances 1 through n and all
features 1 through N. The minimization of this function can be done using the linear
least squares approach and will result in feature weight estimates Bj» j=1,...,N. The
least squares approach, also called ordinary least squares, is the most studied and widely
applied method for the estimation of regression parameters. A detailed description is

given in Chapter 2.2 in Gro8 [19], for the interested reader.

2Since the classes of the training data is visible to the classifier while training, regression analysis falls
into the category of supervised training algorithms.
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Figure 2.5: The logistic function [20]

2.3.3 Logistic Regression

As seen above, when dealing with numeric classes the linear regression model is a
natural choice. But when dealing with discrete classes we are required to use the logistic
regression model®. In this model, instead of predicting the numerical class value directly,
a probability of an instance belonging to a class is estimated. For this reason the method
takes advantage of the properties of the logistic function which, for any input form
negative to positive infinity, takes always an output between one and zero and can
therefore be interpreted as a probability. The graph for the logistic function can be seen

in Figure 2.5.
To further explain logistic regression we first have to define the logistic function as follows:

et _ 1
et+1 1+4et

o(t) = (2.4)

where t is a linear function of feature weights 3; and feature values z;, i = 1, ..., N where

N is the number of features. ¢ can therefore be expressed as:
t=>_ B (2.5)
i

Plugging this into the logistic function we obtain the logistic regression function:

1

Flz)= —
() L+ o (3, Bia)

(2.6)

3The term logistic regression is usually used when dealing with binary classes. When the data can be
divided among more than two classes the term multinational logistic regression is used. In this thesis we
consider only binary class problems.
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Similarly to linear regression the method needs to find the weights [3; that best fit the
training data. As discussed in Section 2.3.2, linear regression makes use of the least
squares method to estimate the unknown parameters ;. However, since the outcome
of logistic regression is dichotomous, the least squares approach is not applicable [21].
The method that yields the least squares function, when applied to the linear regression
model, is called maximum likelihood. For a fixed sample, the maximum likelihood method
selects the underlying model’s parameters such that it maximizes the likelihood function.
Thus, the method chooses the parameters such that it maximizes the probability of
obtaining the observed data with the model at hand. To construct the likelihood function
[(B) in the case of logistic regression, we assume that observations are independent. This

assumption leads to the following product:

n
1(B) = [T oz [1 = o)) ¥ (2.7)

i=1
where y; are either 0 or 1 according to the outcome of our model. In maximum likelihood
estimation we are only interested in the parameters f5; that maximize (/). Since it is
mathematically more convenient to work with the logarithm of [(/3), we can do so and
still obtain correct weights 3;. This expression is referred to as log-likelihood and is given

as:
n

L(B) = a(U(B) = >_(1 —yi)o (L — F(x;)) + yio (F(x;)) (2.8)

i

Now the weights 8; need to be chosen such that the log-likelihood is maximized. This
is done by differentiating L(/3) with respect to [31, 52, ..., Sy and setting the resulting
expressions equal to zero. The resulting equations are referred to as likelihood equations.
As mentioned earlier, in linear regression the likelihood equations can be solved using
the least squares approach. However, in logistic regression these equations are non-linear.
Finding their solution requires iteratively solving a sequence of weighted least-squares
regression problems until the log-likelihood converges. The convergence happens usually
within a few iterations. For details of this method we would like to refer the interested
reader to McCullagh et al. [22].

Using the logistic regression function for binary classification can be easily visualized
by imagining a decision boundary at probability 0.5. The classification now works as
follows: If F'(xz) < 0.5 the instance belongs to class 0 and if F'(z) > 0.5 to class 1. In case
F(z) = 0.5 we have no clear classification and we can classify the instance as belonging

to either class.
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2.3.3.1 Ridge Regression

In logistic regression, ridge estimators can be used to improve the weight estimates for
features and thereby reducing the error made by future predictions. The effect of ridge
regression is, that the higher the ridge parameter is chosen, the more the feature weights
shrink towards zero. This property avoids overfitting and is especially useful when
dealing with a dataset were the number of features is relatively large compared to the
number of observations. Le Cessie et al. [23] show an approach to extend ridge regression
theory in standard linear regression to logistic regression. Their approach maximizes the
log-likelihood of the logistic regression model (see Equation 2.8) by introducing a penalty

of the form:

B) = 1(B) — N|BI? (2.9)

where [(f) is the unrestricted log-likelihood function and ||5]| = (32 BJQ-)%, the [2-norm of
feature weight vector 5. The ridge parameter () controls the amount of shrinkage of (3
towards 0. Thus, if A = 0 we perform ordinary maximum likelihood estimation, whereas
A — 00, all B; will tend to 0. A large number of features will give rise to unstable feature
weight estimates 3;. Shrinking them towards 0, while allowing for a little bias, stabilizes

the model and provides estimates with smaller variance [23].

2.3.3.2 0Odds Ratio

After fitting a logistic regression we need to somehow asses the correctness of the estimated
feature weights and interpret their values. As stated by Hosmer et al. [21], the main
question that is being addressed is “What do the estimated coefficients in the model
tell us about the research questions that motivated the study?”. Looking at the plain
feature weights only does not necessarily answer this question. For better interpretability
of the model’s parameters odds ratios have been introduced in literature. In the simple
case with only one feature x that can take values 0 or 1, the odds ratio quantifies how
strongly the presence of x is associated with the outcome of the classification. Following
the example of [21], let the classification outcome y be the presence or absence of heart
disease and feature x denote whether or not the person engages in regular exercise. An
odds ratio of 0.5 would indicate that the odds of having heart disease (y = 1) if exercising
(x = 1) is only one half the odds of heart disease (y = 1) when not exercising (z = 0).
Thus, the odds ratio gives us a numerical estimate of relatedness between feature x and
the outcome y. For this reason the odds ratio has proven to be a powerful analytic

research tool when dealing with logistic regression.
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2.3.4 Normalizing and Standardizing Data

Before starting any data mining task data pre-processing should be considered as a highly
important first step. When dealing with numerical features normalization is a common
method that can be used to transform the range of every feature into a certain interval

(usually [0,1]). A formula for normalization is given in [24] as:

Tnorm = M (210)

Tmaxr — Tmin

with observation x, the normalized value x,,, and the minimum and maximum value
for the particular feature x,,in , Tmae respectively. Normalization is very useful for
regression problems since the magnitude of feature weights can be easily interpreted by
looking at their numerical value. A disadvantage of normalization is that it is prone to
outliers. Another method that does not suffer from outliers is standardization. Here the
goal is to transform the data in a way that it has zero mean and unit variance. From

[24] we obtain the standardization formula as:

x —
Totd = — a (2.11)

with the standardized value x4, normal distribution parameters mean p and variance o.
In most cases, mean and variance are usually unknown for a given data set and can be
estimated using the sample mean /i and sample variance 2. The sample mean can be

obtained as the arithmetic mean of the statistical sample, as follows:
n
> (2.12)

where n is the number of observations and z; is the i*" observation from the sample. The

sample variance o2 can be obtained from the sample as:

S (@ — ) (2.13)

Here again, i denotes the mean estimate. o2 is biased by a factor of ”Tfl and is therefore
called biased sample variance. If this bias is corrected, the the result is referred to as

unbiased sample variance and is denoted as:

1
n—1

82:

S ) (2.14)
=1

For very large sample sizes using the uncorrected variance estimate is generally accepted,

whereas for smaller samples using the unbiased sample variance is favorable.
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2.3.5 Cross Validation

When evaluating a classifier there are multiple test options: One way is to use the training
set for evaluation. The results of this method are not very meaningful, since the classifier
obviously performs best on the data it has been trained with. On the other hand, what
is of interest is how the classifier performs on unseen data. Another method is to split
the whole data set into training data and test data*. Here the classifier learns form the
training data and can be evaluated on the unseen test data. Drawbacks of this method
are however, that if your data set is rather small loosing a part as test data can harm
performance of the classifier significantly. An even bigger problem is the spread of the
training and test set. If the sets are chosen unluckily the result of the evaluation may not
be representative of the classifier’s true performance. Furthermore, it is generally hard to
determine if these sets are representative or not. To avoid this dilemma we can split the
data multiple times into differing training and test sets and perform the whole evaluation
procedure multiple times. We can then average the performance to obtain a less biased
evaluation result. This is the basic idea behind cross-validation. More specifically, for
cross-validation the number of times the split-test-evaluate iteration is performed is
chosen beforehand and is called the number of folds. The data is then randomly split into
the number of folds partitions and for each iteration a different partition is chosen as the
test data. The remaining partitions form the training data. For example, if the number
of folds is set to ten, the data is split into ten equal random sets. Then ten iterations are
performed were each time the classifier is trained on % of the data and evaluated on %.
This procedure ensures that every instance in the data set has been used exactly once

for testing. Finally, the average of the ten iterations yields the classifier’s performance

estimate.

2.3.6 Weka

For the exploration of the data sets we used the machine learning software tool WEKA,
which is developed at the University of Waikato, New Zealand. Witten et al. [25]
state that Weka “is a collection of state-of-the-art machine learning algorithms and
data preprocessing tools.” They argue that “it provides extensive support for the whole
process of experimental data mining, including preparing the input data, evaluating
learning schemes statistically, and visualizing the input data and the result of learning.”
The advantage of WEKA is the ease of its use and the access to implementations of the
majority of machine learning algorithms. After transforming the data into a WEKA

compatible format it is possible, for example, to preprocess the dataset by applying

4A common way to split is % training and % test data.
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normalization to it. After choosing a learning method, the data can then be used to
train and evaluate the resulting classifier and its performance. All of this functionality
is provided in the user interface and can be accessed without writing any source code.
Additionally to the user interface, WEKA provides an APT to access it directly from

Java code which was very useful when integrating the classifier into our system.

2.4 Processing Large Datasets

The advances in digital and mobile communication have lead to the availability of data
sets so large and complex, they have become hard to process on standard statistical
software [26]. This trend is also amplified by the world’s capability to store increasingly
larger amounts of digital data [27]. Since these massive datasets require high amounts
of computing power and storage space, processing is usually done by spreading the
workload between multiple systems. The bigger the cluster of these systems becomes,
the higher is the risk of hardware failure and the system’s fault tolerance becomes
increasingly important. An approach that is scalable and fault tolerant is the MapReduce
programming model. The following sub-sections elaborate on the basic concepts of
MapReduce and one of its implementations (Apache Hadoop) and a high-level framework
(Apache Pig) which is based on the Hadoop implementation. Finally, we introduce the
ClueWeb research dataset that consist of about 733 million English web pages.

2.4.1 MapReduce

Dean and Ghemawat [28] introduce the MapReduce programming model which enables
users to process and generate large datasets on large-scale computer clusters. These
clusters can be made up of commodity hardware, as opposed to highly expensive main-
frame computers. The MapReduce system automatically parallelizes the computation
among the cluster and takes care of machine failures an inter-machine communication.
Inspired by the map and reduce primitives, which are used in functional programming,

the authors designed a new abstraction that hides the details of parallelization.

As implied by the name, a user has to specify two functions: a map function and a
reduce function. The map function takes an input key/value pair and outputs a set
of intermediate key/value pairs. For each key, the system then groups together all
intermediate values and passes them to the reduce function. In the reduce function the
user can access each key with an associated list of values to reduce the list to a smaller
set of values. Following this model a simple word count program can be written where

the map function is called for every document in a collection. The function then emits
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map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, ‘‘17°);

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit (AsString(result));

Figure 2.6: MapReduce word count problem in pseudo code

every word in the document and its count. In this case, the reduce function’s input
consist of the key which is a certain word and a list of word occurrences. All the reduce
function has to take care of now is going through the list of counts and add them to a
global count. Finally the global count’s value is emitted. Figure 2.6 presents pseudo

code taken from Dean and Ghemawat [28] which implements the word count problem.

2.4.2 Hadoop

Apache Hadoop is an open-source, Java-based implementation of the MapReduce model.
It uses the Hadoop Distributed File System (HDFS) to store the data efficiently. HDFS
tries to maximize data locality by assigning the workload to the servers in a cluster
where the data needed for the tasks are stored [29]. This is done by breaking down the
data into small blocks and distribute them throughout the Hadoop cluster. Each node
therefore works only on a smaller subset of the dataset which provides the necessary

flexibility and scalability for big data processing.

The architecture of a Hadoop cluster is made up of one master node, which takes care
of distributing tasks and data to one or more worker nodes. The procedure works as
follows: After the client application submits a job to the master node it breaks down
the job into multiple tasks which are then distributed among the worker nodes. To take
advantage of locality, the tasks are distributed to keep the work close to were the data is
located. If a tasks fails or times out it is re-scheduled. In case the task fails multiple
times on the same node it is moved to a different node, thereby making the system more

fault-tolerant.
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24.3 Pig

Olston et. al [30] present the Pig system for ad-hoc analysis of massively large datasets
and its accompanying language Pig Latin. The authors identify the main weakness of
the MapReduce model as being too rigid, since it strictly allows for only one input and
two-stage data flow. Their proposed language is a mixture of “the spirit of SQL, and
low-level, procedural programming”. Pig Latin programs are made up of a sequence of

steps, where each step is a single transformation of the data. Therefore, “

writing a Pig
Latin program is similar to specifying a query execution plan”, which helps the developer
to better understand the data flow. Pig Latin also supports custom data processing needs
by letting the user create so called user-defined functions (UDFs). A UDF can customize
all aspects of data processing step in Pig Latin. The functions follow Pig’s fully nested
data model by taking non-atomic parameters as input and output non-atomic values. To
achieve a high amount of parallelism, the Pig platform is built on top of Hadoop and

translates each Pig script into a sequence of MapReduce programs.

2.4.4 ClueWeb

As closure of this chapter, we present the ClueWeb [31] dataset, which is a large research
dataset that consists of 733,019,372 English web pages. These web pages where collected
as part of a web crawl between February 10, 2012 and May 10, 2012. In addition to
the crawling procedure, web pages where filtered and organized into a format that is
advantageous for research. The dataset captures only raw text from these web pages and
ignores multimedia content, e.g., audio or video files. Handling the size of the data has
proved to be a challenging task for researchers and requires the use of scalable systems
like MapReduce. However, since it contains large amounts of text, it has become a

valuable linguistic resource.



Chapter 3

Related Work

To the best of our knowledge, there exists no prior work which encompasses all research
topics that we address in this paper. Therefore, we discuss related work divided into
the following topics in this chapter: The first section elaborates on efforts in the field of
question generation (Section 3.1). There, we examine knowledge-graph-based, text-based
and crowdsourcing approaches to generate fill-in-the-blanks questions, multiple choice
questions or type-based question templates. In the second section we focus on estimating
the difficulty of a question (Section 3.2). One of the approaches utilizes a community
answering service (Stack Overflow) to infer hardness of a question based on competition
between users. The second part of this section focuses on work that estimates reading
difficulty for natural language text. Section 3.3 highlights techniques for the verbalization
of queries. We discuss approaches that verbalize SPARQL and SQL statements to guide
users when formulating queries in these languages. In the final section we present work
that focuses on the analysis of Jeopardy! questions (Section 3.4), which originated as

part of the Watson project, developed by IBM.

3.1 Question Generation

Following Rus et al. [32], the task of question generation is defined as the automatic
generation of questions from various input sources. Sources can be raw text, a database
or some form of semantic representation. The authors identify two core aspects for
question generation: the question’s goal and its importance. They further argue that the
“goodness” of a question can only be determined by looking at the context the question
was posed in. Thus, it is required to find information about the question’s goals and
what counts as important regarding the current context. While examining related work,

we found that in practice many proposed approaches cannot be strictly categorized by

23
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a single input source, since these papers make use of a combination of various input

sources.

Sakaguchi et al. [33] focus on the problem of removing words from a sentence to create
fill-in-the-blanks quizzes for language learning. For the removed words they create
distractors' and evaluate them in terms of reliability and validity. A distractor has to be
reliable; meaning that it cannot be replaced with the answer, thereby avoiding multiple
correct answers to a question. Furthermore, the distractors have to be valid; meaning
that they are “close enough” to the correct answer, such that they distract the learners
that do not know the correct answer. Their proposed method first finds the word to be
left out by looking at error-correction pairs extracted from a large English learner corpus
and selecting the verbs where a semantic confusion was made. Then, they calculate
the conditional probability P(w.|w.) that a word w, is misused as w. and compute a
confusion matrix based on these probabilities. Given a sentence, the verbs appearing
in the confusion matrix are identified and made blank. To generate the distractors, the
authors train multiple classifiers for each target word using the error-correction pairs.
These classifiers are based on the discriminative Support Vector Machine model and
are trained by looking at 5-gram lemmas and their dependency types with the target
word. Each trained classifier for a target word works by taking a sentence as input and
outputting a verb as the best distractor given the 5 word context. Finally, the approach
is evaluated in terms of effectiveness, by conducting a user study with English native
speakers and comparing the ratio of appropriate distractors with two baselines. They
show that their discriminative models perform better than their baselines that use a
generative model. Furthermore, they show the validity of their distractors by measuring
high correlation between the performance of non-english speakers on a test generated by

their system and the participant’s TOEIC? scores.

Narendra et al. [34] propose an end-to-end system for the automatic generation of
fill-in-the-blanks questions from a given text. Their method retrieves a text document
from the Cricket domain as input and outputs a sentence with a blank and four answer
options. One of the options is the correct answer, whereas the remaining three options
are distractors. For a given document, their approach performs three stages of processing
until the question is generated: In the first stage a relevant and informative sentence
is selected to represent the question’s sentences. For this task the authors use an off-
the-shelf extractive summarizer and use the top ten percent of the summarizer’s output.
In the second stage, their approach selects keywords that are used as the blank in the
question. Keywords can be either named entities, pronouns or constituents. Additionally,

they define a list of observations to help prune the list of candidate keywords, which

1A distractor is an incorrect option in a multiple choice question.
Zhttps://www.ets.org/toeic
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encompass relevancy of a token and the position of the preposition, among others. In the
final stage, the researchers use an approach backed by a knowledge graph to generate
the question’s distractors. The knowledge graph is only involved in distractor generation
when the selected keyword is a named entity. In the case that a named entity is not
a person, their algorithm selects a fact from the knowledge graph at random. In case
that it is a person, the algorithm selects facts depending on the Cricket team the person
plays in. This helps to generate distractors of players whose properties are close to the

answer’s properties.

The approach introduced by Labutov et al. [35] focuses on generating high-level compre-
hension questions rather than factoid questions. What distinguishes their approach is
that it does not require the system to deeply understand the text, as the generation of
question templates is accomplished by crowd workers. The approach generates questions
by representing the source text in an ontology. The ontology is built as the Cartesian
product of Freebase article categories and article section names, derived from Wikipedia.
The authors call these mappings category-section pairs. For instance, the category Person
and the section Early life form such a pair. Using these pairs from the ontology, crowd
workers are asked to create high-level templates in the next step. For the above mentioned
category-section pair a crowd worker may create the question template Who were the
key influences on <Person> in their childhood? To ensure the generated questions are
high-level and relevant, the authors build a classifier that ranks each question according

to its relevance to the given text.

A method that utilizes semantics provided by an ontology was introduced by Al-Yahya
[36] as the OntoQue engine. The author’s system is backed by an ontology with roughly
300 RDF triples to generate multiple-choice, true/false, and fill-in-the-blank questions.
OntoQue generates questions by iterating over RDF statements that contain entities,
such that every statement can be turned into a single question. RDF triples that are
not meaningful for questions are sorted out. Fill-in-the-blank questions are generated by
leaving out either the subject or the object of a triple. For true/false questions either
the subject or object is replaced by an entity belonging to the same class as the entity
of the correct answer. Distractors for multiple-choice questions are generated by either
considering entities that share the same class-membership as the answer or enumerating
all individuals in the knowledge graph and collecting all assertions where the individual
is either subject or object. Furthermore, the author utilizes the rdfs:1label property
to access the surface form for an entity. The system was evaluated by the author, by

categorizing the generated questions as good or bad, and measuring precision.
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3.2 Difficulty Estimation

In this section we discuss related work in two problem domains related to the estimation
of difficulty in language. The first domain deals with the prediction of question difficulty
in the context of community question answering services, such as StackOverflow? and
Yahoo! Answers*. The second domain deals with the prediction of reading difficulty of
natural language text. Even though approaches of said domain do not deal specifically
with questions, the discussion of this work gives insights into the prediction models used

for the estimation of difficulty in language related problems.

Liu et al. [37] addresses the problem of estimating question difficulty in community
question answering services. They use a competition-based approach, which models
question difficulty by taking the user expertise level into consideration. In their work
they make two assumptions: First, the difficulty of a certain question is higher than
the expertise score of it’s asker. Second, the user’s expertise, who has given the best
answer, is higher than that of the asker and all other users who gave lower ranked
answers. Question difficulty is then determined by looking at the pairwise comparisons
for a “two-player” competition with one winner and one loser. Competitions can be of

the following kind:

e competition between question and the question’s asker
e competition between the question’s asker and the best answerer
e competition between the best answerer and the question’s asker

o multiple competitions between the best answerer and all other answerers

Now, the problem of estimating question difficulty can be cast into the problem of learning
the relative skills of each player by looking at the results of the two-player competitions.
If we regard the question as a participant in the competition, the question’s difficulty
can then be retrieved as it’s skill score. Skills scores learned for all other users reflect
their expertise scores. To learn the relative scores, the authors adapt the TrueSkill
ranking model [38]. To evaluate the approach of Liu et al. [37], 300 question pairs are
sampled from StackOverflow and experts are asked to compare their relative difficulty.
Then, the authors measure the accuracy of their system as the number of correct
pairwise comparisons divided by the total number of pairwise comparisons. Finally, their
method is compared to a PageRank-based approach [39], where the difficulty of tasks

in crowdsourcing contest services is estimated. The approach models the problem as

3http://stackoverflow.com
“http://answers.yahoo.com
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a graph, where an edge between two tasks encodes that one task is harder than the
other. Then they interpret the PageRank score of each task as the difficulty measure. In
Liu et al. [37], the authors find significant performance improvements compared to the

PageRank-based method, in terms of accuracy.

There is a body of work done in estimating reading difficulty of texts. Therefore we
place emphasis on the most related approaches in this field. Collins-Thompson et al. [40]
created an approach which uses statistical language models to asses reading difficulty.
The method uses a smoothed unigram language model based on a variation of the
multinominal naive Bayes classifier. The semantic difficulty of a given text T' is predicted
as the likelihood that T was generated by a language model that is representative for a
certain school grade level. These language models are trained from authoritative sources
and educational websites that have grade levels assigned to them. Their work shows that
particular words are very decisive for a certain grade level. For instance, the authors
found that the words grownup, ram and planes where most representative for grade level
1, whereas the words essay, literary and technology were most indicative for grade 12.
One drawback of their method is that it considers lexical features only and does not
incorporate features based on grammar. In contrast, Heilman et al. [41] present work that
shows how reading difficulty estimation can be improved by considering a combination
of lexical and grammatical features. In their approach, the authors consider the relative
frequencies of a set of morphologically stemmed word unigrams, which constitute the
lexical features. As grammatical features, the approach computes the relative frequencies
of sub-trees of syntactic parse trees up to a certain depth. Using these features the
researches experiment with three linear and log-linear models, namely linear regression,
proportional odds model and multi-class logistic regression. These models were evaluated
on documents of a web corpus, where each document had a grade level assigned to it.
As a result, they found that the proportional odds model performs best for predicting
reading difficulty.

3.3 Query Verbalization

Query verbalization is a sub-problem of natural language generation (NLG). NLG often
finds application in dialog systems, where a novice user that is not familiar with the
format of the underlying data, expects some sort of human interpretable representation.
In the context of query verbalization, the main purpose is to assist users formulating
queries by translating their query into natural language. This enables users to compare
their query’s reflection of their information need more easily, since a textual representation

of the query is assumed to be interpretable by humans more effortlessly.
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An approach to verbalize SPARQL queries into natural language was proposed by Ngomo
et al. [42]. Their approach is intended to assist novice and professional users in creating
SPARQL queries, by making the assumption that users better understand their query if it
is written in natural language. Their approach works by using three steps (preprocessing,
processing and postprocessing) to verbalize and refine the natural language representation
incrementally. In the preprocessing step, a combination of types is assigned to each
projection variable in the query. The query is then normalized by transforming all nested
UNION statements into disjunctive normal form. In the processing step, each triple pattern
is verbalized separately by a rule based approach, which maps each triple to a sequence
of Stanford dependencies. Furthermore, the WHERE clause of the query is verbalized
by transforming the extracted types from the preprocessing phase elements using a set
of pre-defined rules. In the postprocessing step, the verbalization is transformed into
a more natural phrase by identifying and removing redundancies. To evaluate their
approach, the authors implemented a prototype called SPARQL2NL and performed a user
study. Participants where asked to evaluate the verbalization according to the machine
translation metrics adequacy and fluency, introduced in [43]. They also measured the
task completion time and inferred that their approach reduced the time for experts and
novices alike. Finally, they compared their approach to Ell et al. [44] and showed an

improvement in terms of adequacy and fluency.

Koutrika et al. [45] presents an approach for the verbalization of SQL queries. Their
method represents structured SQL queries as directed graphs, where edges are annotated
with extensible template labels to capture the semantics of a query. Each edge can
represent one of the following relations: (1) membership of an attribute to a relation, (2) a
predicate or (3) a selection. After building the query graph, the natural language phrases
are composed by different graph traversal strategies (namely, InAF and MRP). In InAF
the algorithm starts from the query subject and performs a depth-first search through the
query graph until all relations have been reached. MRP also traverses the query graph in
depth first search, but the actual direction of the translation is chosen according to the
current state of the algorithm. Furthermore, their work also encompasses an algorithm
for selection of the best templates for a given query, by building the best combination of
automatically created and manually specified templates on-the-fly. Finally, the authors
measure the effectiveness of their method by selecting two teams of SQL experts which
evaluate a set of automatically generated query explanations. One expert team is asked
to write a query explanation, whereas the other expert team evaluates the performance

of each algorithm, by comparing the output with the user generated content.
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3.4 Jeopardy! Question Analysis

As part of IBM Research’s effort to push the boundaries in deep question answering,
the company accepted the challenge to build a system that could answer questions of
the American TV quiz show Jeopardy! in real time. Their work resulted in the creation
of the Watson system, which was able to automatically answer Jeopardy! questions at
a level competitive with human champions [1]. A large part of the work focused on
analyzing Jeopardy! questions. Lally et al. [46] perform an extensive effort to analyze
Jeopardy! questions in order to find the best approach for answering them. They state
that it is required to find the focus of a question, which is the reference to the answer.

Consider the example question:

He was a bank clerk in the Yukon before he published “Sons of a Sourdough”
in 1907.

Here, the focus is the pronoun he. Finding the question’s focus is essential in later
stages to align the question with a supporting passage in a document. Furthermore, they
propose an approach to detect lexical answer types (LATs). An LAT is a term in the
question that indicates the type of the entity that is being asked for. For instance, the

question:

Henry VIII destroyed the Canterbury Cathedral Tomb of this saint and
chancellor of Henry II.

indicates that the answer entity is of type saint and chancellor. These LATs are used in
Watson to determine if the answer type matches the types of multiple answer candidates,
thereby eliminating entities with non-matching types. In addition to focus and answer
type detection, they build a question classifier that can determine to which question
category a question belongs. They identify seven broad question categories: factoid,
definition, multiple-choice, puzzle, common bonds, fill-in-the-blanks and questions about
abbreviations. Identifying these question classes is an important step for later stages in the
answering process, since it determines which answer strategy or machine learning model
is used. They find, that even though all questions of all categories appear frequently in
Jeopardy!, the major percentage of questions are factoid. Questions are factoid when
their answer is based on factual information about one or more individual entities®.
Kalyanpur et al. [47] focus on these factoid questions and decompose them into atomic
parts, where each part contains only one fact. In Jeopardy! it is quite common that a

single question contains multiple facts. Consider for example the question:

5Since these questions are by far the most common, in our work, we focus on factoid questions only.
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This company with origins dating back to 1876 became the first U.S. company
to have 1 million stockholders in 1951.

This question contains two facts: (1) a company with origins dating back to 1876 and (2)
a company that became the first U.S. company to have more than 1 million stockholders
in 1951. The authors hypothesize that decomposing the question into single facts can
help in the evidence collection process. The hypothesis is based on the assumption that
it is more likely to find evidence supporting a single fact, than evidence that supports
both facts at the same time. The work focuses on two types of decomposable questions:
parallel and nested decomposable. The example question, stated above, is categorized
as parallel decomposable, since its facts are mutually independent and relate to the
answer entity. However, decomposable questions contain facts about an entity related to
the correct answer and a separate fact that links the entity to the correct answer. The

question:

A controversial 1979 war film was based on a 1902 work by this author.

can be decomposed into two separate clues. The first clue asks about Francis Coppola’s
Apocalypse Now, which is related to the question’s answer. It basically serves as a side
clue. The second clue given, asks about the novella Heart of Darkness by Joseph Conrad,

who is the actual answer to the question.



Chapter 4

Question Generation from

Knowledge Graphs

In this chapter, we present our approach for using factual knowledge from the YAGO
knowledge graph to automatically generate questions. Our system expects a difficulty
level (easy or hard) and a topic (e.g., sports) as user input. The system’s output will be
a question in natural language, that abides the input properties. On a high level, the
system can be split into three separate units: The first unit is responsible for the selection
of the question content, meaning: What/Who is the question’s target (the answer) and
which clues are given to the user (a subset of facts about the answer). Furthermore, the
unit checks if the generated question has a unique answer. The second unit estimates the
difficulty of a question given the information selected by the first unit. It uses a binary
logistic regression classifier trained on the Jeopardy! question-answer corpus, with given
difficulty judgments. The third unit verbalizes the “raw” facts to make them legible
for the users. This is done using a template that mimics Jeopardy!-style questions and
makes use of handwritten and automatically created lexical resources to ensure linguistic

variation.

A working version of the system was demonstrated at the poster track of the 2015
International World Wide Web Conference, in Florence, Italy. The actual poster paper,
shown at the conference, can be inspected in Appendix A. Further details about the

poster can be found in Seyler et al. [48].
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C John_Argyropoulos )

linﬂuences
C target:Leonardo da Vinci >

type

Mona Lisa (Renaissanceartists )

Figure 4.1: Question graph example

4.1 Generation of Question Graphs

The first step of our approach is the generation of a question graph. A question graph is
a set of facts and a corresponding target entity (the question’s answer), which resembles
the semantic representation of the question. An example of a question graph is depicted
in Figure 4.1, for illustration purposes. An English translation of the graph could be:
This Renaissance artist created Mona Lisa and is influenced by John Argyropoulos. There,
the target entity (Leonardo_da_Vinci) is the answer to the question. Because question
generation aims at generating quiz questions, we chose the following constraints for each

question graph:
o The answer to the question should be a single entity (e.g., Leonardo da Vinci).

o The answer entity should be relevant to the given topic (e.g., Renaissance).

e The question should contain at least 3 but no more than 5 facts to avoid information

sparseness or exuberance.

e The entities mentioned in the question’s clues should not contain tokens that
overlap with the answer entity (e.g., A fact asking about Leonardo da Vinci’s

birthplace Vinci, Florence should be filtered out).

o The question should specify a meaningful type for the answer entity (e.g., Renais-

sance artist).

e The question should contain a single unknown variable only, which is the answer
to the question. From this follows, that we restrict the generation process to

“star”-queries.
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To generate a question graph, the algorithm starts by selecting a target entity, which will
be the answer to the generated question. In the following step, the system ensures that
the entity is semantically related to the given topic. Furthermore, the entity needs to
have some degree of popularity. This is important, since the set of entities contains a large
amount entities which are too obscure for testing the user’s knowledge of a particular
topic. In the second step, a subset of facts from the knowledge graph is selected which
represent the clues of the question. Additionally, the algorithm ensures that the question
graph always contains at least one type and at least one non-type relation which is a

requirement for the natural language generation step.

4.1.1 Selection of Target Entities

As mentioned before, one challenge of our system is to generate questions for a given topic.
This process can be translated to finding a set of entities that corresponds to the provided
topic. To address this problem, we make use of the Wikipedia category structure. We
use DBpedia as a proxy to gather the information about Wikipedia categories and use
it in combination with the YAGO dataset to construct the Wikipedia category graph .
The graph contains a mapping of all Wikipedia categories to their corresponding YAGO
entities. For any given category, we perform a breadth-first search through the category

graph visiting all subcategories and collecting their entities up to a certain depth.

4.1.1.1 Wikipedia Category Graph

The Wikipedia category graph contains the Wikipedia category structure and the category
membership of every YAGO entity, associated with it. The data structure of the graph
is represented as two mappings: One mapping contains the subcategory-to-category
pairs (the category structure), while the second mapping contains the categories and
their YAGO entities. The Wikipedia category structure can be obtained from one of
the DBpedia datasets. The data contain RDF-triples with the relation <core#broader>
which indicates that subject category is a subclass of the object category. For ex-
ample, Category:Italian_Renaissance core#fbroader Category:Renaissance states
that the category Italian Renaissance is a subclass of the category Renaissance. In
addition, we obtained the mapping between Wiki categories and the DBpedia entities
they contain. In the final step we translated DBpedia to YAGO instances, to generate the
mapping between categories and their entities. An illustrating example of the resulting
graph structure can be found in Figure 4.2. In the example, the elements marked in
bold-blue represent the category structure, whereas the elements marked in black, with

rounded corners, represent the entity-category mapping.
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| category:Renaissance |

hasSubCategory asSubCategory
| category:Italian_ Renaissance | | category:Renaissance_ people |
hasMember asMember hasMember
[entity:LeonardoidaiVinci] [entity:Nicolaustopernicus]

Figure 4.2: Example of Wikipedia category graph

Using the resulting graph, we can obtain all entities for a given category by traversing
the graph in a breadth-first manner, until we reach a certain depth. The depth of the
category graph needs to be limited, since the Wikipedia category structure is prone
to semantic drift. This can be attributed to the fact, that for some categories a more
general category is a subcategory to a more specific category. As a concrete example, we
can find a path from the category Computer Science to any person listed in Wikipedia

by traversing the graph as follows:

Category:Computer_science

hasSubClass Category:Areas_of_computer_science
hasSubClass Category:Artificial_intelligence
hasSubClass Category:Problem_solving
hasSubClass Category:Abstraction

hasSubClass Category:Identity

hasSubClass Category:National_identities

hasSubClass Category:People_by_nationality

For some categories, e.g. Computer Science, semantic drift causes the retrieval of all
entities in Wikipedia and therefore the graph can only be traversed up to a certain depth
before a category’s entities become to unrelated to the chosen topic. In our experiments
we found that a depth of three generally provides the best trade-off between the retrieved

entities relatedness to the topic and the coverage of a given topic.
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4.1.1.2 Criteria for Choosing the Target Entity

After retrieving all entities for a chosen topic, it is necessary to find a principled way
to choose the target entities. We developed two approaches to achieve this: The naive
variant chooses an entity uniformly at random, whereas the more informed variant chooses
a target entity according to its popularity. Problems with the naive method arise, since
the set of entities for a given category can be very large and a major percentage of this
set are obscure. These entities are typically unheard-of and are usually referred to as
“long tail” entities. To deal with this common problem, we decided to choose an entity
according to its popularity!. In our approach the entity’s likelihood of being chosen is
proportional to its popularity. The probability that entity e is chosen (P(e)) can be

expressed by the following equation:

pop(e)

Ple)= £ pop(e;)

(4.1)
where pop(e) is the popularity measure and E is the set of all entities. As a result, more
popular entities are more likely to be chosen than less popular entities, which makes

occurrences of obscure entities less likely.

Another problem that arose was that entities may be popular globally, but not within
a certain category. For example, the category Grammy Award Winners has Barack
Obama as its most popular entity. This is true, because he won a Grammy Award for
an audio book. Since all other entities in the category are less popular, he becomes the
category’s most prominent entity, even though a musician might be a better fit. Thus,
when calculating the popularity for an entity it is not sufficient to look at its general
popularity only. It is required to measure the popularity within the chosen category.
Naturally, we call this category popularity which is defined in Section 4.3.1.1. After
substituting the general popularity with the category popularity, we were able to retrieve

entities that are better suited to asses the knowledge of a given topic.

4.1.2 Selection of Facts

When the target entity is selected, we need to ensure that the facts selected for the
cues in the question fulfill various properties. Certain facts in the knowledge graph
would give away part of the answer, which would have significant impact on question
difficulty. Therefore, Section 4.1.2.1 deals with removing facts that have a significant

token overlap with the answer. Also, it should be ensured, that each additional clue

' A definition of popularity can be found in Section 4.3.1.1.
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adds meaningful information to the question. Repetition of facts and redundant types
should be avoided. To address this problem we incorporate the type taxonomy (Section
4.1.2.2). Additionally, we selected a set of top-most meaningful classes and we disregard
all superclasses in the hierarchy. This is required, since classes at the top of the class
taxonomy are too abstract and therefore unsuitable for question generation. Section

4.1.2.3 discusses this issue in more detail.

4.1.2.1 Elimination of Entities with Token Overlaps

When selecting the triples that make up the question’s cues, we avoid triples that would
give away the answer in any way. This problem occurs when an entity of a newly selected
fact has some sort of overlap with the answer entity. For example, this is fairly common
in the case of family members, that share a last name. To account for this, each entity’s
tokens are cross-checked for non-stopword overlaps with the target entity, before choosing
a new fact to add to the question graph. As mentioned before, this is required since an
entity could reveal part or all of the answer. For example, the question Which soccer
player is married to Victoria Beckham? reveals the answer entity’s (David_Beckham)
last name . As an example for full revelation of the answer the question Which rock
band created the album Pearl Jam? contains the all of the answer’s tokens (Pearl_Jam).
In addition, we decided to allow for overlaps in stopwords, since they do not give away
information about the answer. However, this approach has its limitations. If an entity is
made up entirely of stopwords, our method would not be able to identify this. A common
example is the popular rock band, that is simply named The Who. Solving this issue is

an open problem and is not further discussed in this thesis.

4.1.2.2 Consideration of Class Hierarchy

Triples that contain information about the target entity’s classes can contain redundant
information. The redundancy occurs when two types about the same entity form a
class-subclass relationship. In that case, all superclasses of the most specific type can
be ignored, since they do not add useful cues to the question. For instance, consider a
question about the soccer player Ronaldo. First, the type soccer_player is added to the
question content. At this point, selecting a type which is a superclass of soccer_player
will not add any conducive information to the question. In our example, this can be
exemplified when adding the type athlete. It is already stated that the target entity
is a soccer player and through common sense a user can infer that he is an athlete,
as well. Therefore, athlete can be disregarded. Even though types are selected at

random, the algorithm developed as part of our approach guarantees that only the most



Chapter 4 Question Generation from Knowledge Graphs 37

Excluded Class Meaningful Class
wordnet_abstraction_100002137 <wordnet_person_100007846>
wordnet_causal_agent_100007347 <wordnet_organization_108008335>
wordnet_group_100031264 <wordnet_artifact_100021939>
wordnet_life_100006269 <wordnet_event_100029378>
wordnet_living_thing_ 100004258 <wordnet_location_100027167>

wordnet_object_100002684
wordnet_organism_100004475
wordnet_physical_entity_100001930
wordnet_psychological_feature_100023100
wordnet_social_group_107950920
wordnet_thing 104424418
wordnet_whole_100003553
yagoGeoEntity

yagoLegalActor

yagoLegalActorGeo
yagoPermanentlyLocatedEntity
owl:Thing

Table 4.1: Excluded and top-most meaningful classes

specific type is kept. Before selecting the next type to be added to the question, the
algorithm constructs a taxonomy tree that contains all types that are currently present
in the question. To retrieve the most specific type, every type that is a superclass of any
leaf node is pruned. Consequently, for types: person, athlete, soccer_player; only

soccer_player is kept as part of the question.

4.1.2.3 Exclusion of Classes and Predicates

Some classes and relations are not suitable for question generation and have to be removed
manually. We decided to exclude classes that we consider to be too general, since we
found that they are too abstract to result in useful clues in the question. As an extreme
example, consider the class owl:Thing. Since all entities are things, adding this type
information does not result in meaningful question cues. We selected a set of top-most
meaningful classes and disregarded any class above in the hierarchy. The right column
of Table 4.1 presents the highest-level classes, which we considered to be meaningful.
The excluded classes, which are considered to be more general, are depicted in the first

column of said table.

In addition to class concepts, we found that certain relations are unfit for the question
generation task, as well. Most of these relations are used to represent technical information
about an entity and therefore have little value, when used as a question’s cue. For instance,

the predicate hasWikipediaArticleLength provides information about the length of the
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SELECT ?x WHERE {
?7Xx created Mona_Lisa .
?Xx type Renaissance_artists .
John_Argyropoulos influences 7x

}

Figure 4.3: SPARQL query for Figure 4.1

entity’s Wikipedia article. Since it is not reasonable to expect any person to know this
exact number, relations of this kind can be ignored. To solve this issue, we disregarded

all triples in YAGO that represent meta-data about articles.

4.1.3 Query Generation & Uniqueness Check

After the selection of facts is completed, we have determined the question’s answer and
context. As described above, that information is represented as a question graph. In the
next step, the question graph is transformed into a SPARQL query, which will enable us to
query the knowledge graph in later steps. We considered SPARQL to be a natural choice
for our purpose, since it is the standard language for querying RDF data. The query
for retrieving the target entity as an answer to the query can be constructed as follows:
The query is of type SELECT, so the outer statement is SELECT ?x WHERE { ... }. The
variable ?x is used to retrieve the answer set to the query. The more interesting part
is the body of the WHERE statement. Here, we insert statements about the triples we
selected in earlier steps of the question generation process. Each triple we selected has
to be transformed into an intersection statement with the target entity as the variable.
Depending on the position of the target entity we select either the subject or the object

of a triple as the variable. For instance, in the triple

Leonardo_da_Vinci created Mona_Lisa

would be turned into

?x created Mona_Lisa

since the Leonardo_da_Vinci is the answer to the question. In the above mentioned
triple he is the subject and therefore it has to be replaced with a variable. Similarly,
the object is replaced when it resembles the target entity. Finally, the full SPARQL

statement for Figure 4.1 is shown in Figure 4.3.

As a final step in the chain of question generation tasks, we need to confirm that the

answer to the generated SPARQL query is unique. This step is required, since our goal is
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to generate questions that have only a single entity as the answer. This can be achieved
by querying the SELECT statement, that was constructed in the previous step, to the
knowledge graph and measuring the size of the query’s answer set. If this query returns
more than one result, the selected facts for this target entity are not unique and we have
to start afresh. In case the result set only contains the target entity, we assume that a

unique set of cues was found and we output the query as a valid question.

4.2 Query Verbalization

At this point of the question generation process we have successfully selected a target
entity for the given category and we have selected a set of corresponding facts about
the target entity. This set has the properties that it is a unique combination of facts
that yields the target entity as its sole result, when queried against the knowledge graph.
Furthermore, we have turned the representation of these triples into the SPARQL query
format. Since our ultimate goal is to create a system that generates questions in a quiz
setting, our system has to generate output that is understandable for human players.
In our current state, the question is in a format that is only interpretable by experts
that are familiar with the SPARQL language, and therefore needs to be “translated”
into natural language. In computer science literature, Reiter and Dale [49] state that
computer systems that are able to generate texts in a human language are considered
as natural language generation (NLG) systems. As a sub-field of artificial intelligence
and computational linguistics, research in NLG is concerned with the verbalization of
the underlying non-linguistic representation of information into a human understandable
format (natural language). In our setting, we create a query verbalization scheme
which allows the system to output natural language. Therefore, our system falls in the
category of NLG systems. The following section elaborates on our approach, which uses

template-based methods to transform SPARQL queries into natural language.

SELECT ?x WHERE {
?x actedIn Saving_Private_Ryan .
?x graduatedFrom Chabot_College .
?X type actors

}

Figure 4.4: Example SPARQL query about Tom Hanks
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4.2.1 Verbalization Approach

For a given SPARQL query, we use a template-based approach to generate the natural
language representation. Since we pose our system in a quiz game setting, we defined
the template such that generated questions reflect the Jeopardy! clue style. In Jeopardy!,
questions are called clues and are expressed as statements. Similarly, the answer is

expressed as a question. For example, in Jeopardy! the question:

This fictional private investigator was created by Arthur Conan Doyle.

has the answer:

Who is Sherlock Holmes?

As stated above, our intermediate SPARQL query contains at least one type and one
non-type triple. This enables us to verbalize the query using the following the simple
pattern:

This typeti, ..., and typey p1 O1,-.., and Py Op - (4.2)

Here, each type; is obtained as the object of the type triples and p; o; are the predicates
and object entities of the remaining triples. For verbalization, we use the surface form
of each type and turn it into singular. Also, for object entities we use their canonical

surface form, as captured in the knowledge graph (e.g., David Beckham).

To verbalize predicates, we constructed a dictionary of paraphrases for every relation
(Section 4.2.2). Each relation has at least two paraphrases, one for the case when the
target entity is the subject and another for when it is the object. Thus, the playsFor
predicate can be verbalized as plays for or has player depending on whether our target

entity is David_Beckham or Real_Madrid, respectively.

4.2.2 Paraphrasing Relations

This pattern-based approach yields acceptable results, considering that its a relatively
simple approach. For instance, consider the example query about Tom_Hanks, depicted
in Figure 4.4. With our approach, the query is verbalized as This actor acted in Saving
Private Ryan and graduated from Chatbot College. If we exchange the entities in the
question, the verbalization hardly changes: This actor acted in Apollo 13 and graduated
from California State University. This is due to the fact that relations are verbalized in a

static way, where there exists only one paraphrase depending on whether the target entity
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Relation Paraphrase

actedIn acted in
starred in
appeared in
played in

graduatedFrom | has graduated from
is a graduate of
studied at

18 an alumnus of
holds a degree from

Table 4.2: Two relations and their paraphrases

is a subject or object in the fact. To cater to variety, we mined paraphrases for each
relation from the ClueWeb? corpus. These paraphrases where extracted by considering
entity pairs, that are already contained in the knowledge graph, and by capturing the
text between those entities. For example, the fact Tom_Hanks actedIn Forrest_Gump
could be found ClueWeb text as: The actor Tom_Hanks starred in Forrest_Gump which
grossed a worldwide total of over $600 million at the box office. Here it should be noted,
that in a pre-processing step, mentions of YAGO entities in the ClueWeb dataset had
to be annotated. From the example text, we can extract starred in as a paraphrase for
the relation actedIn. From this list of paraphrases we hand select a set that fits into
our verbalization scheme. Table 4.2 shows some example paraphrases for the relations
actedIn and graduatedFrom. After applying these paraphrases we can alternatively
verbalize the above mentioned SPARQL query as: This actor starred in Saving Private

Ryan and received a degree from Chatbot College.

4.2.3 Finding Salient Types for Entities

In addition to paraphrasing relations, we present an approach for selecting important
types for an entity. Finding the important types for an entity can assist the user when
disambiguating the entity mentioned in a question. Consider, for example, the question
This artist created Daughter. At the current state of the verbalization it is impossible
to constitute what Daughter means. It could be any artifact: a painting, an album, a
song, etc. Let’s say in our example we were talking about the Pearl Jam song Daughter.
Stating the type of the entity in the question would be essential to guide the user towards
the right entity. Our goal of this task is to be able to express the original query as This

artist created the song Daughter.

2The ClueWeb corpus is introduced in Section 2.4.4
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Textual Type | Count || Textual Type | Count
artist 884 || painting 108
case 236 || person 95
master 225 || masterpiece 87
work 219 || thinker 86
people 214 || score 82
kinda 201 || example 78
bloomers 199 || figure 78
genius 175 || inventor 72
man 118 || painter 70
ear 111 || some 59

Table 4.3: Textual types and number of occurrences for Leonardo da Vinci

Our approach works as follows. We use ClueWeb as our primary source of data and
consider the mentioning of a certain type in context with the entity at hand as evidence
that this type and entity are a “good match”. More concretely, we mine these textual
types from ClueWeb using Hearst patterns [50] and disambiguate the entity, mentioned
in the text, and map it to YAGO. In a subsequent step, we map the extracted types
to the types in the knowledge graph. For simplicity, we consider only the headword
of the extracted type. For instance, consider the sentence Leonardo da Vinci is widely
considered to be one of the greatest and most-talented painters of all time, to be contained
in the ClueWeb corpus. The textual type we extract would be greatest and most-talented
painter. By looking at the headword (painter), we enhance the chances to find an overlap
with the classes in our knowledge graph®. Now, it is possible to obtain a ranking, as
the number of mentions of textual types in the corpus. Here, we implicitly assume,
that the number of mentions correlates with the “importance” of a certain type. The
top-20 textual types for Leonardo_da_Vinci with their occurrence count can be observed
in Table 4.3. In the table it can be observed that the textual types are quite noisy.
Therefore, as a filtering step, we map the extracted types to the types we already know
about the entity in the knowledge graph. To expand the set of types in our knowledge
graph, and to increase the chance of finding an overlap with an extracted type, we lookup
synonyms in WordNet. For instance, for the WordNet class discoverer we find the
synonym inventor, which maps to the extracted, textual type inventor. As a result,
Table 4.4 depicts the salient types for Leonardo_da_Vinci, extracted by our method.
The types seen in the table where mapped to the YAGO classes when considering the
top-25 textual types, which where found in the ClueWeb corpus.

3Painter would be an exact match to WordNet class painter
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Salient Type
wordnet_artist_109812338
wordnet_person_100007846
wordnet_scientist_110560637
wordnet_inventor_110214637
wordnet_painter_110391653

Table 4.4: Salient types in knowledge graph for Leonardo da Vinci

4.3 Estimating Question Difficulty

One essential property of the system is how well it measures the difficulty of a question.
Standardizing difficulty is a challenging task, since question difficulty depends on multiple
factors of the individual who is supposed to answer the question. Strictly speaking,
it requires measuring the average, personal difficulty of a group of people, that is of
statistically relevant size. For this reason, we choose a gold standard for question
difficulty, created by quiz experts, that is representative for a large amount of the general
population. We decide that questions of the TV series Jeopardy!, which is a popular
American game show, fulfill our desiderata for a gold standard. In the show, general
knowledge questions are asked in a broad variety of domains. These questions are
associated with monetary values which represent the question’s difficulty, as assessed by
quiz experts. The show started in the 1980s and has new shows on a daily basis, thus
the corpus of questions is sufficiently large. Furthermore, there is an online community
(J! Archive®) that provides question-answer pairs and other information to almost every

show that has been broadcasted.

Even though labeling a question as more difficult than another can be subjective, some
questions do appear harder than others. In Jeopardy! it can be observed that the higher
the difficulty of a question, the less people are able to answer it correctly. To demonstrate
this we used a set of 264,548 Jeopardy! questions and measured the correlation of the
number of times the question could not be answered (in Jeopardy! this event is called
“Triple Stumper”) and the monetary value of the question. The result can be observed
in Figure 4.5. To get homogeneous values, the data were normalized by doubling the
value of each question before November 26, 2001 and halving the value of the Double
Jeopardy Round. This is due to the fact that the values originally ranged from $100
to $500 but where doubled in 2001 [51]. Like the name suggests, the values in Double
Jeopardy Round are doubled but do not reflect a higher difficulty. In the plot it can be
observed that with growing monetary value the number of Triple Stumpers increases,

which implies that these questions appear to be more difficult. The plot also shows

“http://j-archive.com/
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Figure 4.5: Correlation of the number of times a question could not be answered and
the monetary value of the question

the number of times one, two, or three players gave the wrong answer. These numbers

increase as well, but less drastically.

One component we identified as part of our question generation system, is a difficulty
estimator that can decide whether a question belongs to the easy or hard category. From
a high-level point of view our method works as follows: We identify a set of features for
every question and integrate them into a mathematical model (the question difficulty
classifier). The Jeopardy! questions are then used to train the model since they represent
our gold standard of question difficulty. To map the monetary value of Jeopardy! clues
to our easy/hard difficulty classes, we consider clues worth $200 as easy and clues worth
$1000 as hard. Currently, we ignore questions of intermediate difficulties, since their
difference in difficulty is subtly nuanced and therefore increases the hardness of the
task significantly. The model is then used to assign a numerical value, that reflects the
measure of difficulty, to unseen, automatically generated question. Using this difficulty

measurement questions can then be ranked into one of the two difficulty categories.
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4.3.1 Metrics

Before selecting the mathematical model of our classifier, we identified a set of metrics that
can influence question difficulty positively (they make the question easier) or negatively
(they make the question harder). These metrics rely on statistics derived from the

knowledge graph and Wikipedia. The factors we identified are the following;:

o Popularity: (global or category-based): Captures the intuition that questions about

popular entities tend to be easier in general.

o Selectivity: Here the intuition is that more selective triples should give more useful

clues to the user.

o Coherence: Represents the relatedness between pairs of entities. Based on intuition,

more coherent pairs should provide better clues and thus make the question easier.

These metrics form the basis for our features, which we select in Section 4.3.2.3. In
the following subsections we explain these metrics in greater detail and give their

mathematical definitions.

43.1.1 Popularity

Popularity originated from the intuition that the more popular an entity is, the more
people know about it and its properties. Thus, the question becomes easier. For example,
when looking at the question’s answer, popularity can be very decisive. A question about
an entity that is unknown to the player makes it impossible for her to answer it. So it
follows that the lesser known an entity is in general the harder it becomes (in general) to

answer the question.

We define two flavors of popularity: Global popularity measures how well known an entity
is for the general public, whereas category-based popularity measures how well known an
entity is within a given category. For instance, Barack Obama, as the president of the
United States, is internationally known, so in a list ranked by popularity he would rank
highly. On the contrary, Erna Solberg (the prime minister of Norway) is much lesser
known world wide, thus, she would occupy a lower rank than Barack Obama. But on a
list for the category Norwegian Politicians she would rank fairly high. As discussed in
Section 4.1.1.2, category popularity plays an important role when the entity has multiple
types but is famous for only a subset of these types (e.g, Barack Obama is famous for

being a politician, not as a musician).
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Our approach of measuring popularity is based on the assumption that the more articles
talk about a certain entity, the more important, or popular, this entity is. When an
article mentions another entity, it is usually denoted by a link to the corresponding
Wikipedia page. These links form a graph which can be exploited for measuring the
importance of an entity within Wikipedia. With this in mind we can define the popularity
of an entity as the number of articles that point to it (in-links). For obtaining a measure
in the interval [0,1], we divide the number of in-links by the total amount of entities in

Wikipedia, resulting in the following equation:

I

¢(e) = 5] (4.3)

Where e is an entity, I, is the number of incoming Wikipedia links for e and |E| is the

total number of entities. On the other hand, category-based popularity is calculated by

regarding only the links between entities that belong to the given category which form a

sub-graph of the Wikipedia link-graph. Category-popularity is calculated as follows:
IC

() = 15y (44)

Where I¢ is the number of incoming Wikipedia links and |E®| is the number of all

entities considering only entities that belong to category C.

4.3.1.2 Selectivity

Selectivity measures the number of triple patterns that exist for a relation-entity pair.
The underlying idea is that more selective triple patterns have less possible answers
associated with them and therefore give better clues to the player. Therefore, selectivity
is measured as the reciprocal number of answer triples in the knowledge graph and can be
expressed as a query for a triple pattern with one variable. For example, the number of
results for query ?x <actedIn> <The_Green_Mile> is much smaller than for the query
7x <livesIn> <Los_Angeles>, thus the relation that Somebody acted in The Green
Mile is more restrictive, hence more informative, than the relation Somebody lives in Los
Angeles. To fit the measure into a [0,1] interval we divide 1 by the size of the answer set
of the query. As an effect, the most selective triples with only one answer get a score of
1. The score decreases the less restrictive a triples is. Selectivity can be computed as

follows:
1

’qrel’

w(rel) = (4.5)

where rel is a relation of the kind variable predicate object or subject predicate

variable and |g.¢| is the number of results for query ¢ of relation rel.
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4.3.1.3 Coherence

In our setting, coherence captures the semantic relatedness of an entity pair. It can be
best compared to measuring co-occurrences of entities in text. For example, it can be
assumed that the entities Barack_0Obama and White_House occur together more often
than Barack_Obama and Buckingham_Palace. Therefore, the coherence of the former
pair is greater than the coherence of the latter pair. In the context of question difficulty,
we assume that higher coherence between entities in a question results in lower difficulty.
This is especially true for the coherence of entities in the question and the target entity.
When considering the Wikipedia link-graph, we measure coherence as the ratio between
the size of the set of articles that point to both entities and the size of the union of
the sets of articles that point to either one of the entities. This measure is known as
Jaccard similarity coefficient, which is a statistic used for comparing the similarity of

sets. Coherence can be derived as:

ple. f) = ——- (4.6)

where e, f are entities and [ is the number of incoming Wikipedia links for a given entity.

4.3.2 Question Difficulty Classifier

Even though difficulty is subjective, our goal is to use machine learning techniques to
train a model that can classify questions according to their difficulty. Since there exists a
large quantity of classifiers, there are multiple factors that need to be considered before
choosing a classification model. These choices depend highly on the type of training data
and the characteristics of the features. As training data we chose the Jeopardy! dataset,
since it contains questions, their answers and an assigned difficulty. In this setting we
use labeled data, so it follows that we have to select a classifier that can be used for a
supervised learning task. Our features are based on the metrics that were discussed in
Section 4.3.1. These features are continuous and exhibit linear behavior. For example,
the higher the popularity of an entity, the easier the question should become. Thus, the
decision boundary is linear. Another crucial criterion was to choose a classifier with a
simple mathematical model, that we can understand and interpret, such that we can
apply it to estimate the difficulty of unseen (automatically) generated questions. This
was driven by the idea, that if the weights of the model can be learned from the training
data, these weights could then be used to classify unseen questions and guide question
generation. The final criterion is the format of the output data. Since our goal is to give
binary classifications (easy/hard) for questions, the classifier of our choice should also

account for this. We selected logistic regression as being the best fit for our task, since
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it fulfills all the criteria mentioned above. Logistic regression is a supervised learning
method, that can handle linearly separable features and classifies instances into discrete

classes.

4.3.2.1 Selecting the Training Data

To learn the difficulty for a question we use training data that contain questions and
their difficulty assessment. The assessments should be made by experts in the quiz field
or a group of individuals of statistically relevant size. Additionally, the set’s size should
be adequate. A source of data that was compiled for research purposes is the Question-
Answer Dataset, created by Smith et al. [52]. The dataset consists of questions-answer
pairs with difficulty ratings, which were created as part of a student research project.
We decided that the dataset is not a good fit for our purpose, since difficulty ratings
where made by no more than two individuals and are therefore not representative of the
general public. Another question-answer data source we considered was the Quiz Bowl
Incremental Classification Dataset, as discussed in [53]. The dataset contains questions
and answers of the Quiz Bowl game. Quiz Bowl is a quiz game where students of all
education levels compete on questions about a wide variety of academic subjects. Even
though the set contains the information if a question was answered correctly or not, it
does not indicate its difficulty. Thus, it is not suitable for our learning task, as well.
Lastly, we considered the archive of the game show Jeopardy!. J! Archive is a community
effort of game show enthusiasts that index questions, answers and monetary values of
almost every show, since it started in 1984. We crawled the information about the shows
from the J! Archive web pages and parsed it into entries for each question. A sample

instance of a question from the Jeopardy! dataset can be found in Figure 4.6.

question-id: 492

show-id: Show #11

date: Monday, 1984-09-24
round-type: Double Jeopardy Round
category: U.S. HISTORY

question: In ’63, 200,000 Washington marchers heard him say, "I have a dream"
monetary-value: $200.0
daily-double: false

answer: Martin Luther King, Jr.
players-that-answered: Eric(right)
triple-stumper: false

Figure 4.6: A sample instance from the Jeopard! question dataset
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Each instance has the following data fields:

e question-id: A unique identifier we generate for each question.
o show-id: An identifier for a particular Jeopardy! show.
e date: The date when the question was first aired.

o round-type: Type of the Jeopardy! round: The type can be reqular or a double
Jeopardy! round. In a double Jeopardy! round the monetary amount for questions

are doubled, but the questions do not appear to be harder.
o category: A textual representation of the category.
e question: The question text.

o monetary-value: The dollar value assigned to a question. The player can earn this

amount, when she answers the question correctly.

e daily-double: This indicates whether a question is a daily double. Any question
can randomly be selected as daily double, which means that only the player who
selected the question is allowed to answer it. Before answering, she has to decide

how much of her already earned money she wants to wager.
o answer: A textual representation of the answer.

e players-that-answered: The names of the players that answered the question and

an indicator whether their answer was correct or not.

o triple-stumper: If set to true, this field indicates that no player was able to give a

correct answer. This is referred to as triple stumper in Jeopardy! terminology.

We use the extracted information for the training of our classifier. As input to our
classifier we make use of the question text, the answer and the monetary value. The
monetary value is normalized by doubling the value of each question before November
26, 2001, since the monetary values where doubled in later shows. In addition, the value
of the Double Jeopardy Round is halved, since the monetary amount for these questions
is doubled, but question difficulty is not affected. To gather questions that have the
biggest gap in difficulty, we regard only questions with a dollar amount of $200 as easy

questions and $1000 as hard questions.

The metrics discussed in Section 4.3.1 require information about the Wikipedia link graph,
which is represented in the YAGO knowledge graph. Therefore, for further processing of

the training data, it is required to identify the entities that are mentioned in a question.
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For this task we utilized the AIDA [15] system (Section 2.2.4), which is a framework
for finding and disambiguating entity mentions in natural language text®. We build an
instance of the system and process each question as a single document, with question-id
as the document identifier. The document’s content is presented to the system in the form

<Question text>.[<Question answer>], which would result in the following input:

Shah Jahan built this complex in Agra, India to immortalize Mumtaz,

his favorite wife. [Taj Mahall

For this question the AIDA system extracted the following entities in the question text:
<Shah_Jahan>,<Agra>,<India>,<Mumtaz_Mahal>. The answer entity to the question
is the entity: <Taj_Mahal>. In further processing steps, we filter out questions where
the answer is not an entity and at least one entity is present in question text. This is

required since the questions generated by our system exhibit similar characteristics.

4.3.2.2 Selecting Questions According to Coverage in YAGO

At this point, the training of our classifier on the data set did not yield satisfying results.
This was due to multiple reasons: If the entities that were spotted in the question provide
insufficient coverage of the actual entities in the question, the actual content of the
question is not reflected correctly. Therefore, the classification task becomes distorted.

For example, consider the question:

During WWII the Declaration of Independence was moved to this Kentucky

military base for safety.

In this question, the system found one entity only (<Kentucky>), while two more entities
where missing (<World_War_II>, <United_States_Declaration_of_Independence>).
Having only this information available, it is not possible to adequately reconstruct the
question in the knowledge graph and our metrics become inapplicable. Another problem
we encountered occurs when one or more entities are disambiguated incorrectly. This
leads to an unintentional falsification of the classification results. For instance, if a
question has a highly popular entity as an answer, it would be an indication of an easy
question. However, if the answer is disambiguated with an incorrect, low-popularity

entity, the question spuriously appears hard.

5For a detailed description of the AIDA system please refer to Section 2.2.4.
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A related case we encountered was the following question:

This British physician and novelist based his Holmes character on one of his

university professors.

In this question the entities <United_States> and <Sherlock_Holmes> where spotted.
It can be noticed that the token British was falsely identified as <United_States>, when
the correct entity would have been <United_Kingdom>. Since we have no influence on
the spotting and disambiguation task, we have to manually discard these questions from

our training data set.

Since this task has to be carried out manually, we decided to limit our training set
to 500 questions. We manually verified that in each question all spotted entities
are disambiguated correctly and the coverage of entities is sufficient. Additionally, the
question’s semantics can be conveyed when the question is reconstructed in our knowledge
graph. Before indiscriminately evaluating questions from the (large) J! Archive question
set, we decided to apply another filtering step. Before considering questions for manual
evaluation, we filtered out questions where the spotted entities are not connected in the
YAGO knowledge graph. This accounts for relations between entities other than the
<linksTo> relation, which indicates a Wikipedia Link and does not provide information
about the relation’s semantics. With this step we ensure that an underlying connection

between the spotted entities is prevailing.

After the filtering step we generate a list of questions at random and start the manual
annotation. When annotating Jeopardy! questions as being adequately replicable in
YAGO, we evaluate the following criteria: Given the spotted, correctly disambiguated
entities, would it be possible to reproduce the question in YAGO to an extent that the

answer to question would still be unique? To exemplify this consider the question
Golf course groundskeeper Bill Murray battles golfers in this laugh riot.

where the answer is the movie Caddyshack. The fact that Bill Murray acted in Caddyshack
may be captured in the knowledge graph, but the resulting question What movie did
Bill Murray act in? is very unlikely to be unique. As a counter-example, consider the

following question:

Tommy Lee Jones & Anne Heche no doubt had a blast making this film that

erupted on the screen in 1997.

where the answer is the entity <Volcano_(1997_film)>. Here, the combination that

Tommy Lee Jones and Anne Heche acted in a movie in 1997 is much more likely to be
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Figure 4.7: Popularity distribution among entities, logarithmic scale

unique. The resulting question What 1997 movie did Tommy Lee Jones and Anne Heche
act in? is therefore likely to have just one answer and it is covered in YAGO at the same
time. Therefore, this question would be evaluated positively and added to the training

data set.

4.3.2.3 Features

The features that were selected for the classifying task are based on the metrics presented
in Section 4.3.1, different attributes of the target entity and the type and number of
the entities in the question. We selected features that measure the extrema (minimum
/ maximum), the arithmetic mean and the sum of the metrics. A list of features we

identified and their description can be found in Table 4.5.

Furthermore, we found that the distribution of the values for popularity follows a long tail
distribution. Meaning that there are few, highly popular entities (the head), compared
to many entities with low popularity (the tail). The distribution of popularity is depicted
in the left plot of Figure 4.7. The x-axis enumerates entities, sorted by popularity
in logarithmic scale. The y-axis depicts the popularity measure. Because the margin
between the most popular entities and entities at lower ranks is extremely high, we
decided to use logarithmic damping on the original popularity measure. This has the
effect, that the difference in popularity between highly ranked and lower ranked entities
decreases, while achieving ranking equivalence. The resulting distribution can be seen in

the right plot of Figure 4.7.

4.3.3 Incorporating Difficulty Estimating in Question Generation

In the context of generating a question with a specified difficulty, we propose a more
principled approach than randomly selecting facts until we find a question with matching
difficulty. We reason that we can incorporate difficulty estimates in our generation

algorithm, to guide our search towards an easy or hard question. From a high-level point
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Feature

Description

popularity of target (dsarget)
minimum popularity (¢min)
maximum popularity (¢maz)
sum popularity (¢yx)

mean popularity (¢,,)

mean popularity question (¢%)

popularity of the target entity

minimum popularity of all entities

maximum popularity of all entities

sum over popularity of all entities

mean popularity of question and answer entities
mean popularity of the entities in the question

person min. popularity (¢F )
person max. popularity (¢f )
person sum popularity (¢§)

person mean popularity ( f )

minimum popularity of all entities of type person
max popularity of all entities of type person

sum over popularity of all entities of type person
mean popularity of all entities of type person

organization max. pop. (¢9..)
organization sum pop. (qbg)
organization mean pop. (¢)

organization min. pop. (¢O

minimum popularity of all entities of type organization

max popularity of all entities of type organization
sum over popularity of all entities of type organization
mean popularity of all entities of type organization

location min. pop. (¢%. )

min
location max. pop. (¢%..)
location sum pop. (qbé)

minimum popularity of all entities of type location
max popularity of all entities of type location

sum over popularity of all entities of type location
mean popularity of all entities of type location

location mean pop. (czﬁﬁ )
other min. popularity (<Z5%]}LL)
other max. popularity (¢2%)
other sum popularity (

o
other mean popularity ( Oth)

°

minimum popularity of all entities of neither type
max popularity of all entities of neither type

sum over popularity of all entities of neither type
mean popularity of all entities of neither type

maximum coherence (pin)
sum coherence (py)
mean coherence (¢,

mean coherence (QOSTA)

maximum coherence of all entity pairs

sum over coherence of all entity pairs

average coherence of all entity pairs

average coherence of entity pairs that involve answer

is person

is organization
is location

is other

binary indicator: answer is of type person
binary indicator: answer is of type organization
binary indicator: answer is of type location
binary indicator: answer is of neither type

number of entities

the number of entities in the question and answer

Table 4.5: Features and their description

of view, the approach still iteratively builds the question graphs by selecting facts, but

with the following difference: after a new fact is selected, the upper and lower bounds for

difficulty are calculated to decide whether it is still possible to reach the desired difficulty,

given the already selected facts.

43.3.1

Intuition of the Approach

As described in Section 4.3.2, the model of our classifier for question difficulty is logistic

regression. This model’s parameters is a linear combination of weights, that minimize

the classification error on the training data (Section 2.3.3). These weights and their
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observations, in combination with the logistic function, output a class probability in the
range |0, 1]6. When creating a question, it is now possible to estimate the bounds of the
probability range, depending on the facts that are already selected in the question. As
new facts are added, these bounds get tighter and therefore we can determine whether
the current set of facts can be extended to generate a question with the desired difficulty.
When we take a detailed look at the properties of the features, it can be noted that if
the target entity and the number of entities in the question graph are fixed, the values
for each feature increase or decrease monotonically when adding new entities. Features
that account for the minimum can only decrease when adding new facts. Similarly, the
maximum, average and sum can only increase when adding new facts (given that total
the number of entities is fixed). From this follows, that the upper and lower bounds
will gradually become closer together, enabling us to approximate the minimum and

maximum reachable difficulty at any point in the question generation process.

Moreover, we distinguish between two kinds of feature states: converged and converging.
If a feature is converged, its value is determined and is not going to change when new
facts are added to the question graph. The value of converging features is still alterable,
but only in an monotonically increasing or decreasing matter. While adding new facts,
the set of converged features grows, since more features will change their state from
converging to converged. For example, consider a question graph that is in the generation
process. The maximum popularity, as defined in Table 4.5, may be ¢pq(€) = €. At
this point, the feature is still considered as converging, since adding a fact that contains
an entity with ¢(e) > €, would increase the feature’s value. However, if a fact is added
with an entity of popularity ¢(e) = 1, the maximum function reaches its highest possible

value. Therefore, the feature’s state changes from converging to converged.

A further distinction we make for converging features is whether they are dependent or
independent. Independent features are only conditioned on a single factor, thus giving
us more freedom in the manipulation of their values. An example of an independent
feature is ¢iarget- Its value reflects the target entity’s popularity and can therefore be
directly influenced by choosing an entity with the desired popularity. In contrast, the
value of dependent features is conditioned on various other factors. Thus, manipulating
the value of a dependent feature is more difficult. For instance, the mean popularity (¢,,)
is dependent on the target entity’s popularity, the number of entities in the question and

the popularities of the entities in the question.

5Since we consider a binary classification problem, P(easy) is equal to 1 — P(hard) and therefore it is
sufficient to look at one class probability only.
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4.3.3.2 Obtaining Bounds on Question Difficulty

In Section 2.3.3 we discussed the logistic function (Equation 2.4), which is the basis for
the logistic regression classifier. To find the lower and upper bounds, given a question ¢,
we need to minimize and maximize the linear function of the feature weights ¢t. Let D(q)
be the difficulty function for question ¢ then we can obtain the minimum and maximum

bounds as follows:

. 1
1
max D(q) = m (48)

Let f;, i € {1,...,n} be the features in . Let §; € [—00, o0] be the feature weights and let
x; € [0,1] be the normalized observations. Now, each feature can be represented as a
tuple f; = (6, z;). To determine the bounds of D(q), each feature has a lower bound and
upper bound associated with it. These bounds limit the interval of the observations as
x; € [li,uw;]. Let F = {f1,..., fn} be the set of all features. Now, converging features in F
have the property that the endpoints of the observation’s interval differ (I; < u;). From
this follows: If a feature is converged, their observations’ difference of the endpoints is 0
(Ii = u;). Therefore, the bounds can be obtained by summing over the upper and lower

bounds of all features in F. This is reflected in the following equation:

tmin = Z Bi lower(z;) (4.9)
fieF

tmaz = Z B’L uPper($i) (410)
fieF

To find the bounds for each feature we have to distinguish four cases: The feature is (1)
positive and increasing (8; > 0Az; — 1), (2) positive and decreasing (5; > 0Az; — 0), (3)
negative and increasing (8; < 0Ax; — 0) or (4) negative and decreasing (5; < 0Az; — 1).
Depending on the case the minimal and maximal bounds can differ, since §; are fixed and
the bounds depend on z; only. Table 4.6 lists the upper (upper(z;)) and lower (lower(z;))
bounds. #in and ¢, enable us to determine the minimum and maximum for D(q),
before adding new entities to the question. Since each feature’s value is monotonically
increasing or decreasing, it follows that the bounds for D(q) shrink as we add new entities.
Determining these bounds is essential when identifying the possibility to reach the desired
difficulty, with the already selected entities. Based upon this information the algorithm

can decide whether to continue with the current selection of facts or backtrack.
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Bi>0ANx; =1 | 5;>0Ax; >0 | B <0Az; — 0| B;<0Az; — 1
lower(x;) T 0 z; 1
upper(x;) 1 T 0 z;
Table 4.6: The four different kinds of features
{0}
{fs}
{fife}

Figure 4.8: Example search tree for an entity with a total of three facts

4.3.3.3 Backtracking Algorithm Design

Using the scheme described in the previous section, we can cast the problem of finding a
new question for a given difficulty into a backtracking problem. First, we give a formal
definition of the search space corresponding to our problem: Consider the set of all
facts for an entity as F. = {f1, fo, ..., fn}. Then our problem space can be seen as a
n-ary search tree, where each node has the currently selected facts associated to it. The
algorithm starts at the root, adds facts to its set of selected entities S until it finds
a combination of facts, that fulfill the input criteria. The algorithm is guided by the
estimated bounds. In the case that the bounds indicate that no addition of any entity
can achieve the desired difficulty, the algorithm backtracks. In case the entire search
space is explored, the algorithm terminates unsuccessfully, since no satisfying solution
is possible for the given target entity. Figure 4.8 depicts the search tree for an entity
with a total of three facts. The set S is shown next to each node. States depicted with a
black node indicate that the current state does not fulfill the exit criteria and therefore
the search is continued. Gray nodes indicate that the bounds signal that no solution
can be found for the current selection of facts and the algorithm has to backtrack. The
procedure terminates as soon as a question with two facts and the target difficulty is

found. Successful termination is denoted with a green node.

To cast question generation into a backtracking problem, we identify the following
elements: P is the search tree, similar to the example seen in Figure 4.8. g is the current
state of the question graph, depicted as nodes in the figure. f is a fact of entity e that can
be added to g. The backtracking algorithm traverses the search tree in depth-first order,
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procedure backtrack(g)
if reject(P,g) then return
if accept(P,g) then output(P,g)
f = first(P,g)
g += f
while f != null do
backtrack (g)
f = next(P,g)

Figure 4.9: Backtracking algorithm in pseudo code

from the root to the leaf nodes. For each node g, which represents a partial question
graph, the bounds of the difficulty are checked and the algorithm decides whether g can
be completed to reach the desired difficulty level. In case it is not possible, the entire
sub-tree is ignored, or pruned, in further processing steps. Otherwise, the algorithm
decides whether ¢ itself satisfies the input constraints and outputs it, in case it is a valid
solution. If g is not valid, the algorithm recursively enumerates all possible sub-trees
of g and continues. Therefore, the resulting search tree is only a sub-set of the entire

search space, since sub-trees that can not result in a solution are pruned.

Backtracking can be implemented by defining six procedures that formalize the problem
to be solved. In the context of the question generation task, these functions are defined

as follows:

o 700t(P): Return the target entity at the root of the search tree.

o reject(P, g): Return true, only if the desired question difficulty is unreachable from

the current state.

o accept(P, g): Return true, if g has the specified number of facts and the desired
difficulty.

o first(P,g): Retrieve the first fact for partial solution g.
o next(P,g): Retrieve the next alternative fact for partial solution g.

o output(P, g): Output g as the solution for the question generation task.

After defining these functions, solving the problem can be reduced to one single call
backtrack(root(P)). The following procedure shown in Figure 4.9 recursively implements

the backtracking algorithm in pseudo code.






Chapter 5

Prototype Implementation

This chapter presents the implementation of the components described in Chapter 4. The
first section elaborates on a high-level view of the system’s architecture. The subsequent
sections are structured top-down, following the system’s component layers. The first
layer is described in Section 5.2, where we present two web applications. One application
was part a poster shown at the 2015 World Wide Web Conference and demonstrates
the question generation algorithm and the verbalization component. The second web
application was used for the experimental evaluation of the difficulty classifier. Details
about the implementation of the classifier can be found in Section 5.3, along with the
details about the implementation of our question generation approach. The last section
discusses details about the tripartite data storage layer, which contains the representation

of the knowledge graph in a triple store.

5.1 System Architecture

Figure 5.1 depicts the system’s architecture from a high level point of view. We decided
to name the system “Q2G”, which is an abbreviation for Quiz Question Generator.
Following the architecture from top to bottom, users can make use of a web browser to
access the web application layer (Section 5.2) which is made up of two components. The
Q2G Web component is a web interface built for demonstration of the question generation
and verbalization schemes. We created the second web application as part of an online
experiment, which enables users to participate in a study we conducted as part of the
experimental evaluation. The major part of the system is the core component, which
is presented in Section 5.3. It contains the back-end, which implements the concepts
presented in this thesis (Chapter 4). Also, it provides a web service which acts as an

interface for the web applications to access data related to the question generation process.
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Furthermore, it contains a custom implementation of a logistic regression classifier, which
is applied to estimate question difficulty. The back-end facilitates communication with
three databases, which make up the data store layer of the system (Section 5.4). This
layer comprises the YAGO knowledge graph, which is represented in a triple store.
Additionally, it contains a high-performance key-value store that stores pre-computed

values and the SQL database, that was facilitated for our experiments.

5.2 Web Application

In the course of this thesis we built two web applications. The first application was part
of the poster, which we presented at the 2015 World Wide Web conference. With the
interface, a user can generate question graphs for a given YAGO entity and retrieve
statistics about the graph and its facts. Also, it was possible to retrieve the verbalization
for the generated question. The second web application was build for the purpose of
evaluating the difficulty classifier as part of a user study. It provides a complete user

interface that handles user management, input logging, and presentation of the data.

5.2.1 Q2G Web

Q2G Web was created as a web interface, which is responsible for the presentation
of the generated questions to the user, and handling her input. It was implemented
using the Apache Click! framework, which is built on the Java Servlet API. Using the
framework enabled us to easily deploy the web application on an Apache Tomcat? web
server. The communication between front-end, back-end, and database is implemented
following the Model- View-Controller (MVC) design pattern, from Gamma et al. [54]. For
data exchange, the front-end interfaces with the back-end, which receives data from the
database and stores them as data access objects in the Java application. These objects
are then serialized using a XML serializer and sent to the front-end, which deserializes
the objects and handles the presentation to the user. The user input is also cast into
objects, which are in turn transported to the back-end using XML. We decided to split
presentation and back-end to keep the presentation application as light as possible. Our
decision was based on the fact that the application had to run on a public web server,

which hosts multiple applications simultaneously.

In the Q2G Web application, the user can input any YAGO entity and retrieve an

automatically generated quiz question about that entity. A screenshot of the interface of

"https://click.apache.org/
*http://tomcat.apache.org/
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Figure 5.2: Q2G Web application

<Albert_Einstein> <isCitizenOf> <Bwitzerland> 0.0006344 0.0111837 0.0051282 0.0024080
<Albert_Einstein> rdf:type <wikicat_Jewish_American_scientists> 0.0006344 0.0000000 0.0027397 0.0000000
<Mileva_Maric> <isMarriedTo> <Albert_Finstain> 0.0000066 0.0006344 1.0000000 0.0070270

Figure 5.3: Metrics of a question about Albert Einstein

the system is shown in Figure 5.2. There, it is possible to specify the number of facts
the question should contain. Additionally, the user can specify the number of variables
in the question graph. This enables system to retrieve questions that are more than star
queries. For example, the question could ask about the football player, whose spouse is a
Spice Girl. Below the interface elements for the user’s input, the question is shown in
graph representation. This graph is automatically drawn using the SPARQL query of the
question, that was generated by the system. Below the graph, one can see all facts from
the YAGO knowledge base that are contained in the question. Using the checkbox “show
metrics” it is possible to retrieve statistical information about these facts. In Figure 5.3

one can inspect the metrics for the facts of a question about Albert Einstein (popularity
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subject, popularity object, selectivity of relation, coherence of entity pair). Please refer to
Section 4.3.1 for a detailed explanation of the metrics. On the bottom of the web page,

the question query is shown in its verbalized form.

5.2.2 Question Difficulty Evaluation Experiment

As part of our evaluation of the difficulty classifier, we conducted a user study with
human participants (Section 6.1.3). In this context, we created a web application with
user interface, to enable participants to access our study. Similarly to Q2G Web, the
online experiment application uses Apache Click to implement the application logic and
is therefore hosted on an Apache Tomcat web server, as well. However, we used the
Bootstrap® front-end framework as building blocks for the user interface, which contains
HTML- and CSS-based design templates and interface objects (e.g., buttons, boxes, etc).
For this application it was not required to split data access/preparation and presentation,
since no load-heavy operations needed to be executed. Internally, we also follow the
MVC design pattern. The questions are retrieved in graph and SPARQL representation
from a PostgreSQL* database (Section 5.4) and then cast into Java objects. The logic
exclusively operates on these Java objects and persists the data when necessary. Error
handling is performed by the view component. The logic of the application infers the
rankings from a drag-and-drop list and stores the corresponding entries in an relational
database. The database schema in UML notation can be found in Figure 5.4. Each
question is represented as a question graph in the database. A question graph has an
unique id and stores the question in SPARQL and DOT-graph representation, alongside
with the name of the answer entity. Every human evaluator has a user name, which is
linked to a unique identifier. Furthermore, the ID of the last entity, whose questions
she worked on, is stored so that if she logs back in to the system, she continue where
she stopped before. Each evaluated question has its rank and absolute difficulty level
associated with it, as well as a time stamp. The difficulty assessments made by our
classifier are kept in a separate table (Question_Graph_Classification). In addition
to the human judgments, the classifier’s assessments have the probability of being an

easy question associated.

In the user interface, the participant is presented with a welcome page, where she can
sign in using her user name. Fach user’s progress is stored in the database alongside her
user name, so that she can stop at any point and return later to wherever she left off.
After signing in, she is guided to the first of two main screens for the evaluation (Figure

5.5). There, she is presented with a ranked list of questions in either SPARQL or graph

3http://getbootstrap.com/
“http://www.postgresql.org/
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Figure 5.4: Database URL diagram for online experiment

view®. Using drag-and-drop she can move each question in the ranked list to the desired
position. After using the “SUBMIT” button, she is guided to the next screen, Figure
5.6, where she is asked to give absolute difficulty judgments for the questions she ranked
in the previous screen. The questions appear in the same order as she organized them
before. After selecting the “SUBMIT” button, the system assures that all questions are
rated and that the absolute difficulty assessments are aligned with the relative difficulty
judgments. Then, she is again presented with the ranking screen, but with questions
about the next entity. This procedure continues until she finished all questions and the

system shows the closing “thank you” screen.

5.3 Core

As stated above, the core component implements the concepts that we present in this
paper. More concretely, it implements the question graph generation algorithm (Section
4.1), the verbalization scheme (Section 4.2) and the difficulty estimation component
(Section 4.3). Since the back-end executes the “expensive” computations, it provides a

web service for the front-end and handles access to the data stores.

In the query generation process, the facts are retrieved from the YAGO knowledge graph

which is stored using the Apache Jena® framework (Section 5.4). Once the minimum

S5Using a button she can switch between the views.
Shttps://jena.apache.org/
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Figure 5.5: Difficulty ranking of a question about Tom Hanks for the user study

number of facts is selected, these facts are turned into a SPARQL query and then queried
to the knowledge graph using the SPARQL interface of the Jena API. Depending on
the size of the answer set, it is then decided if the answer to the question is unique or
not. The query is visualized using Graphviz’ and shown to the user via the Q2G Web
interface. For being able to use Graphviz, we had to write a parser that turns SPARQL
queries into the DOT language®. The metrics (popularity, selectivity, coherence) are
either calculated on-the-fly or looked up from a disk-backed, key-value store. Since the
possible number of combinations of relation-entity pairs for selectivity, and entity-entity
pairs for coherence is too large to precompute, we decided to calculate these metrics at
query execution time. To calculate selectivity, we replace the target entity of a fact with
a variable and retrieve all facts that match the pattern from the knowledge graph. We
then measure selectivity as the reciprocal number of the retrieved answer triples. For
coherence, we query the knowledge graph to retrieve the Wikipedia links and calculate
the Jaccard coefficient of the sets of Wikipedia articles pointing to both entities. However,

popularity for each entity is precomputed as the number of Wikipedia articles that point

"http://graphviz.org/
Shttp://www.graphviz.org/content /dot-language
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Figure 5.6: Absolute difficulty assessment of a question about Tom Hanks for the user
study

to the entity’s page. These values are stored as entity-popularity pairs in a key-value

store, as well.

For the verbalization component, we use an incremental implementation that verbalizes
triples first and then assembles the question according to our pattern-based scheme,
presented in Section 4.2.1. For the paraphrasing of predicates, we maintain a file that
contains a mapping of each relation to its paraphrase, depending on whether the target
entity is the subject or object in the question. The algorithm chooses randomly between
the standard paraphrasing and the additional paraphrases, that were introduced in
Section 4.2.2. A Pig script was used to implement our approach of finding salient types
for an entity, which is discussed in Section 4.2.3. Because of the size of the textual types
dataset, the script was run “offline” on a Hadoop cluster. The resulting salient types
were put in a key-value store, so that they only need to be looked-up when the query is

verbalized.
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The difficulty classifier was implemented in two iterations. In the first iteration we used
the WEKA machine learning framework to learn the features for our logistic regression
classifier. Section 2.3.6 describes details about WEKA and Section 2.3.3 elaborates on
the details of logistic regression. We used the WEKA tool, since it gave us enough
freedom to inspect the data and experiment with various classifiers and features. Once we
selected the classifier type and the corresponding features, we used WEKA to train our
regression model and learn the optimal feature weights. Since WEKA is tailored to work
on a single data set, we found that it performs poorly on single instance classification.
Therefore, we decided to implement the logistic regression classifier in Java, from scratch.
The classifier receives the feature weights, learned using WEKA, and a question graph
as input and classifies the question accordingly. Using our customized Java classifier, we

were able to reduce the processing time for a single instance by a factor of 10.

5.4 Data Store

The system has three main data stores. The central component for data storage is the
YAGO knowledge graph, which is implemented as a Jena TDB triple store. The second
component is a simple key-value store, which is implemented using the disk-backed
MapDB? library. The key-value store contains the popularity tuples for all entities in
YAGO, as well as the salient types which where identified by our Pig script component.
In addition, the Wikipedia Catgory graph (Section 4.1.1.1) is also stored in two maps.
One captures the category to subcategory mapping, whereas the second map captures
the entity-category membership. The third data storage component is the experiment
database, which is a relational database that uses PostgreSQL. The experiment database
contains the graphs and queries that are used in our experiment, as well as the question
difficulty rankings and absolute difficulty judgments that where assessed as part of the
user study. Furthermore, it contains the classification probabilities that were obtained
from our difficulty classifier. Since the database contains both the outputs of the user
study and the corresponding classifier output, the PostgreSQL database was also utilized
for all calculations that were part of the evaluation. We decided to split the storage of
data into three components, due to the unique internal data representation models of
each database scheme. Since data represented as triples can be imagined as a graph,
it is more natural to store them in a graph database. On the other hand, information
needed for our experiment could be more clearly represented and organized in a relational
database, since it allows for multiple, named tables with attributes. Furthermore, one can

leverage the SQL language to analyze the data more conveniently, which was essential for

“http://www.mapdb.org/
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computing the statistics of our experiments. The motivation to use a separate key-value

store for tuples was solely based on performance.

From a data-centric point of view, the knowledge graph serves as the data back-end of our
system. It contains all the semantic knowledge about entities and their relations from the
YAGO knowledge base, and additionally allows to infer statistics about the Wikipedia link
graph. YAGO represents these facts using RDF triples, which are preferably represented
in a triple store. We decided to use the Java framework Apache Jena for the storage
of the knowledge graph. We preferred Jena, since it features the TDB component that
allows for the storage and query of RDF data and can be used as a high performance
RDF back-end on a single computer. Furthermore, it features a rich Java API, which
makes it conveniently accessible from within the Java code, since the API enables us
to pose queries in SPARQL language. Another reason for choosing Jena was its ability
to compactly store data, which resulted in the database using a total of 9.3 GB in disk
space. The size of the database was equal to the raw data, thus the system minimizes
the database overhead. Additionally, the framework for accessing the data store was
hosted entirely on a workstation computer in a Java virtual machine with 4 GB main
memory and Intel Core i3-2120 CPU, clocked at 3.30 GHz.

For populating the database we used the turtle files available for download at http://yago-
knowledge.org/. Using the tdbloader2 command line tool, which is part of the Jena
suite, we imported the data into the Jena database. For the purpose of saving disk space,

we use only portions of YAGO, which are relevant to our system:
e yagoFuacts: Contains all facts that hold between entities, excluding literals.

e yagoTypes: Contains the coherent types extracted from Wikipedia.

o yagoTransitive Type: Contains the transitive closure of all rdf:type/rdfs:subClassOf

facts.

e yagoTaxonomy: Contains all rdfs:subClass0f facts derived from Wikipedia and
WordNet.

o yago Wikipedialnfo: Contains information about in/out-links between Wikipedia

articles.

Since the type taxonomy only includes the immediate class-to-sub-class relations, we
had to automatically generate the transitive closure of the taxonomy. This was required
for the question generation step, where we look for the most specific type of an entity
(Section 4.1.2.2). The resulting database contained 273,781,489 facts from YAGO.
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Experimental Evaluation

In this chapter we present various experiments to evaluate the effectiveness of our methods.
In the first section, we experimentally evaluate our approach for predicting question
difficulty. As part of the experiment, we inspect the agreement of humans labeling the
difficulty of Jeopardy! questions (Section 6.1.1). Additionally, we compare their labels
to the difficulty assessments, made by the Jeopardy! clue writers. In Section 6.1.2, we
present an empirical study that investigates the performance of the difficulty classifier on
the Jeopardy! dataset. Section 6.1.3 discusses our experimental setup and our results
of a user study that measured the agreement of question evaluators, with our difficulty
classifier. Finally, we briefly discuss a query processing method that was customized to

our question generation algorithm.

6.1 Question Difficulty

In this section we present the setup and evaluate the results of two users studies that
deal with question difficulty. In the first study we measure the inter-rater agreement
of humans labeling Jeopardy! questions as hard or easy. We further compare their
assessments to a gold standard, which is the difficulty rating made by the Jeopardy!
writers. In the second user study, we evaluate how much our classifier agrees with human
question difficulty evaluators on automatically generated questions. There, we measure

the agreement for relative and absolute difficulty judgments.
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’ H evaly \ evals \ majority ‘
evaly || 0.192 | 0.325 0.500
evals 0.443 0.661
evals 0.810

Table 6.1: Agreement between human evaluators (all measurements are Fleiss” Kappa)

6.1.1 Human Evaluation of Jeopardy! Question Difficulty

In our first user study, we inspected the agreement between humans when assigning
binary difficulty labels to Jeopardy! questions. Furthermore, we compare their labels to
those given by the Jeopardy! clue writers, which we consider as a gold standard. Our
setting works as follows. We randomly choose 200 questions that were either labeled as
easy ($200) or hard ($1000) by the Jeopardy! writers. More concretely, we ensure that
the same amount of easy and hard questions is selected. In the subsequent step, three
evaluators (evaly, evals, evals) annotated the question difficulty for all questions. After
obtaining their difficulty labels, we compared their overall agreement, pairwise agreement
and agreement, in terms of Fleiss’ Kappa [55], with the majority vote. Here, the majority
vote is simply the label that was assigned by the majority of the evaluators. Overall,
the evaluators reach an agreement of k = 0.328, which is considered fair according to
Landis and Koch [56]. We attribute the fair overall agreement of the evaluators to the
subjectivity of the task. Table 6.1 shows the pairwise agreement, as well as the agreement
of each evaluator with the majority vote. From the table it can be seen that pairwise
agreement of the annotators ranges from fair to moderate. However, each annotator
achieves moderate or substantial agreement with the majority vote, which leads us to
regard the majority vote as an appropriate reflection of human performance. When
considering the majority vote of the three evaluators, they were able to correctly classify

62.5% of all questions, compared to the Jeopardy! gold standard.

6.1.2 Validation of Question Classifier

In this subsection we evaluate the performance of our question difficulty classifier,
introduced in Section 4.3.2, on the Jeopardy! training data. The training data consisted
of a set of 500 Jeopardy! questions that have been annotated as being covered in YAGO
(Section 4.3.2.2). Using ten-fold cross validation (Section 2.3.5), our classifier was able to
correctly classify 66% of the questions. To achieve this result, we performed a feature
ablation study, were we compared different combinations of features and selected the

combination with the highest performance.



Chapter 6 Experimental Evaluation 71

’ Row H popularity | log. popularity | coherence \ types H performance ‘

1 yes yes yes yes 66.4%
2 no yes no yes 65.8%
3 yes yes no yes 65.8%
4 no yes yes yes 65.6%
5 no yes yes no 64.2%
6 no yes no no 63.8%
7 yes yes yes no 62.6%
8 yes no no no 62.4%
9 yes no no yes 62.2%
10 yes yes no no 62.2%
11 yes no yes no 61.8%
12 yes no yes yes 61.8%
13 no no no yes 60.0%
14 no no yes yes 57.8%
15 no no yes no 52.4%
16 no no no no 50.0%

Table 6.2: Results of ablation study of the features introduced in Section 4.3.2.3. The
performance is based on the cross-validation of the question difficulty classifier.

We grouped features into the following four categories:

o Popularity: Features that are related to entity popularity (in Table 4.5 these are
denoted with ¢).

o Logarithmic popularity: Features that are related to entity popularity (¢) on

logarithmic scale.
o Coherence: Features related to entity coherence (o).

o Types: Features related to types (all 7, T € {P,O,L,Oth} and is person, is

organization, is location, is other).

In Table 6.2 we give all feature combinations ordered by their corresponding performance,
which reflects the percent of instances that were classified correctly. It can be observed,
that the best performance is reached when all features are enabled and removing features
leads to worse results. Thus, we reason that all features are relevant and contribute
positively to the classification performance. Moreover, we noticed that popularity-related
features play an essential role in the overall performance. We came to this conclusion,
since the feature combinations that omit popularity are situated at the lowest ranks
of Table 6.2. We further noted that choosing log-popularity over popularity results in
a major performance improvement. In the table this can be seen in row 12 and 4. In

row 12, coherence- and type-based features are enabled in combination with “normal”
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Figure 6.1: Classifier precision vs. size of remaining dataset

popularity. Here the 61.8% of questions are classified correctly. When exchanging
popularity with logarithmic popularity (row 4), performance increases to 65.6%. When

using a combination of both (line 1) performance increases to 66.4%.

Furthermore, we compared the percentages of correctly classified questions by our classifier
(66%) with the percentage of correctly annotated questions with the majority vote of
human evaluators (62.5%)! and find that the classifier slightly outperforms the human
competition by 3.5%.

In addition to measuring the percentage of correctly classified instances, we inspected the
precision of our classifier in correspondence to the confidence of the predictions. Since we
use logistic regression, the output of the classifier is the probability of an instance being
easy [P(easy)] or hard [P(hard)]. Since P(easy) = 1 — P(hard), we define confidence as
a = |P(easy) — P(hard)|. We then inspect the percentage of correctly classified instances
by considering predictions above a certain a-value only. The plot in Figure 6.1 depicts
the precision (percentage of correctly classified instances) on the y-axis, compared to
the confidence (a-value) on the x-axis. As expected, the precision increases with the
confidence of the prediction. In our setting, the system provides enough flexibility to
generate multiple questions for a target entity and pick one with the highest confidence.
It could also be imagined to pick the questions among the ones that pass a certain

confidence threshold.

!'Details can be found in Section 6.1.1.
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6.1.3 User Study

To compare the difficulty assessments of our classifier to the ones made by humans, we
conducted a user study, to experimentally prove the effectiveness of our method. The
study was executed using a web-based interface, which was published to the Databases
and Information Systems group of the Max Planck Institute. The reason we restricted
the study to colleagues only is that we needed computer science experts, who are able to
read SPARQL queries and/or RDF graphs. The following subsections, will elaborate on

the setup of the experiments and present our results.

6.1.3.1 Experimental Setup

For the user study we manually selected a set of n = 50 entities that have reasonable
coverage in YAGO. Coverage is considered reasonable when at least 5 non-type facts exist,
to ensure that it is possible to generate questions with a certain variety. Participants
could rate the same set of n entities and questions, but they were allowed to skip entities
that they were not familiar with. For each entity, we presented three automatically
generated questions to the participants and asked them to (1) order them according to
relative difficulty (Figure 5.5) and (2) give absolute difficulty judgments (Figure 5.6).
Questions were shown to participants in graph representation and as a SPARQL query
to avoid any bias introduced by an automatic or human verbalization. The users were
able to switch between the graph and query views. Since questions were shown in these
representations, it was necessary to ask computer science experts for participation in our

experiment.

To measure relative difficulty, we proceed as follows: Let E be the set of n selected entities
{e1,e€2,...,en} € E. For each e, we generate questions ¢;1, ¢i2, ¢i3 for i = {1,..,n}. Now,
we can obtain a relative difficulty ranking triple r as ¢ < ¢ip < gic, for any permutation
of a,b,c € {1,2,3}. For each r we can now infer three binary ranking pairs (g, < g,
gib < Gics Gia < Gic). To measure the correlation between the rankings of participants and

our classifier, we use Kendall’s 7 rank correlation coefficient, which is defined as:

Ne — Ng

%n(n -1) (6.1)

T =

where n. is the number of concordant pairs, ny is the number of discordant pairs and n
is the total number of pair combinations. In the equation, the denominator accounts for
all possible pair combinations, therefore the value of 7 ranges between -1 and 1. 7 =1 in

the case both rankings perfectly agree. On the other hand, 7 = —1 if the disagreement
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of the rankings is perfect, meaning that one ranking is the reverse of the other. If both

rankings do not agree 7 is expected to be close to zero.

Let R® be the set of ranking pairs of our classifier and RkH the ranking pairs of participant
k,k={1,2,...,N}. A pair is concordant if both the classifier and the participant agree
on the ranking of a question pair (e.g., ¢ia < gip € RC and ¢i, < gip € RkH ). A pair
is discordant if the classifier and participant have opposed difficulty rankings (e.g.,
Qia < Qip € RC but Qia > Qi € R,{;{ ). Now, we can obtain the average correlation using
Kendall’s 7 as:

1

NZT(RC, Ri) (6.2)

k=1

When obtaining absolute difficulty judgments, we want to show that there is sufficient
agreement between our classifier and the human ratings. Our basis are binary judgments
for questions ¢;;, where 7 enumerates all entities and j enumerates the questions for each

entity. To obtain a numerical difficulty rating we define:

0 qij = easy
D(gij) (6.3)
1 qij = hard

We use Cohen’s kappa, which is a statistic that reflects the inter-rater agreement of two

participants which rate a fixed number of items into mutual exclusive categories:

Po — Pe
K =
1_pe

(6.4)

Here, pg is the relative observed agreement between two raters and p. is the expected
chance of agreement. p. can be seen as the hypothetical probability that two raters
agree, given the observed data. The measure has the following characteristics: If two

raters are in complete agreement, then ke

= 1. The lesser the raters agree, the more
rehen tends towards 0. Since Cohen’s kappa measures the agreement of two raters only,
we calculate the agreement of every participant with our classifier and average over the

result. For participant k,k = {1,2,..., N}, this is reflected in the following equation:

1 N
~ 2 (R, Ry (6.5)
k=1
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T T K R Q|
evaly 0.538 | 0.227 0.544 | 0.229 39
evals 0.538 | 0.454 0.333 | 0.281 78

evals 0.519 | 0.303 || 0.540 | 0.315 o4
evaly 0.480 | 0.638 || 0.348 | 0.462 123
evals 0.880 | 1.426 || 0.524 | 0.850 150
evalg 0.625 | 0.973 || 0.340 | 0.529 144
evaly 0.591 | 0.594 || 0.510 | 0.513 93
evalg 0.741 | 0.865 || 0.500 | 0.584 108
evalg 0.627 | 1.018 || 0.333 | 0.540 150
evalip 0.167 | 0.151 || 0.241 | 0.219 84
evalyy 0.455 | 0.324 || 0.515 | 0.367 66
evalio 0.619 | 0.562 || 0.351 | 0.318 84
evalys 0.533 | 0.173 || 0.467 | 0.151 30

average || 0.563 | 0.593 || 0.427 [ 0.412 || 92.538

Table 6.3: Agreement between human evaluators (eval,) and the difficulty classifier.
7 values indicate the agreement in terms of relative difficulty and x values indicate
agreement on absolute difficulty.

6.1.3.2 Evaluation of Results

In this section we discuss our findings of the user study we conducted to evaluate the
performance of our difficulty classifier. As stated above, we evaluate the classifier in
terms of (i) relative and (ii) absolute difficulty judgments. We present the results of our
user study in Table 6.3. A total of 13 evaluators took part in the study, as captured
in the table. The columns labeled as 7 and x correspond to the measures defined in
Equations 6.1 and 6.4, respectively. To recall, T rages in [—1, 1] and  ranges in [0, 1].
Furthermore, the columns labeled as 7 and % correspond to the weighted measures of 7
and k. There, each user’s contribution to the final average depends on the number of
questions she evaluated. Therefore, we give higher emphasis to the values of those users
who finished the study and avoid overly representing users that evaluated only a small
numbers of questions. In the non-weighted case, each user is treated “equally”, which
has the effect that users who label the questions of a single entity only have as much
influence on the result as a user that finishes all 150 questions. The last column (|Q|)

corresponds to the number of questions that each participant has evaluated.

Following the table it can be reasoned, that the rankings produced by classifier moderately
agree with the human annotators with 7 = 0.563. The 7-values of most evaluators range
between 0.625 and 0.519. evals and evalig seem to be outliers in the data set, since there
values correspond to 0.880 and 0.167, receptively. If we disregard the outliers, the 7
values vary 0.286 from the minimum to the maximum 7. Additionally, when the 7-values

for users are weighted by study participation, the weighted average rises to 7 = 0.593.
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The average agreement of absolute difficulty assessments, as captured by Cohen’s Kappa,
has a value of k = 0.427 and is considered to be moderate according to Landis and Koch
[56]. Here, the pairwise agreement between most annotators and the classifier ranges
around the 0.5 mark. The difference between maximum and minimum  values is 0.303,
which is close to the value for 7. Following this, we reason that there is about the same
variance in k and 7. In general, we attribute the reason for the relatively high variance
of both values to the subjectivity of the task. When weighing the k-values, the average

performance falls slightly to & = 0.412, which is still considered as moderate agreement.

6.2 Anecdotal Results

This section presents anecdotal results of the output of our system. In Table 6.4
we present example questions that were generated by our system for the category
Renaissance_artists and difficulties easy and hard. The entity that corresponds to
the given category is <Leonardo_da_Vinci>. For each question we present the SPARQL
query and verbalization produced by our system. Further we show the class probability
that was provided by the question difficulty classifier. To recall, if the probability is
greater than 0.5, the question is considered as easy, whereas a probability smaller than
0.5 is an indication for a hard question. Therefore, the first question was classified as
easy with probability 0.8704. The verbalization of the question shows how the salient
types, which we identified in Section 4.2.3, can be used to express that Mona Lisa is a
painting. The second question is classified as hard. In the verbalization one can see how
the triple <John_Argyropoulos> <influences> ?7x, where the target entity is an object,
is verbalized as is influenced by. The verbalization of the same relation but with the
target entity as subject can be inspected in the third question. Here, the relation of the
triple ?x <influences> <Victor_Bregeda> is verbalized as influences Victor Bregeda.

Additional anecdotal results are presented in Appendix B for the interested reader.

The average time it takes to generate a question for an entity with three triples is close
to 600 ms. If the number of triples is raised to 5, the average generation time drops to
about 300 ms. The reason for this decrease is that questions with five triples tend to
have unique answers more often than questions with three triples only. Therefore, less

questions have to be discarded before a question with a unique answer is found.
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Category

Renaissance_artists

Difficulty

easy

Target Entity

<Leonardo_da_Vinci>

Query SELECT ?x WHERE {

?x rdf:type <wordnet_painter_110391653> .

?x <created> <Vitruvian_Man> .

?x <created> <Mona_Lisa>

}

Verbalization This painter created Vitruvian Man and the painting Mona Lisa.
P(easy) 0.8704
Category Renaissance_artists
Difficulty hard

Target Entity

<Leonardo_da_Vinci>

Query SELECT ?x WHERE {
?x rdf:type <wordnet_inventor_110214637>
?x rdf:type <wordnet_artist_109812338> .
<John_Argyropoulos> <influences> ?x
}
Verbalization This inventor and artist is influenced by John Argyropoulos.
P(easy) 0.4779
Category Renaissance_artists
Difficulty hard

Target Entity

<Leonardo_da_Vinci>

Query

SELECT 7x WHERE {
?x rdf:type <wordnet_artist_109812338> .
?x rdf:type <wordnet_scientist_110560637> .

?x <influences> <Victor_Bregeda>

}
Verbalization This artist and scientist influences Victor Bregeda.
P(easy) 0.2383

Table 6.4: Example questions for entity Leonardo da Vinci generated by the system
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QUERY :
SELECT (COUNT (%) AS ?count) {
SELECT 7x WHERE {
?x rdf:type <wordnet_person_100007846>
?x <actedIn> <Toy_Story_3>
?x <actedIn> <Forrest_Gump>

}

EXECUTION PLAN:

Reorder: (?x <type> <wordnet_person_100007846>)
(?x <actedIn> <Toy_Story_3>)
(?x <actedIn> <Forrest_Gump>)

>> Input
0 1382348 : 7?x <type> <wordnet_person_100007846 >
1 10 : ?x <actedIn> <Toy_Story_3>
2 10 : ?x <actedIn> <Forrest_Gump>

<< Output

?x <actedIn> <Toy_Story_3>

>> Input
0 1 : TERM <type> <wordnet_person_100007846>
1 : null
2 1 : TERM <actedIn> <Forrest_Gump>

<< Output
TERM <type> <wordnet_person_100007846>

>> Input
0 : null
1 : null
2 1 : TERM <actedIn> <Forrest_Gump>

<< Output
TERM <actedIn> <Forrest_Gump>

Figure 6.2: Example of Jena’s optimization of a query execution plan

6.3 Custom Query Execution

As part of an optimization effort, which was aimed at increasing the speed of query
execution when querying for the uniqueness of a question, we inspected logs of query
execution plans of the underlying Apache Jena database. The Jena framework comes
with built-in optimizer for query execution plans, which uses a statistics file that contains
counts for triples with one variable (?x <type> <wordnet_person_100007846>) and
the answer set’s size (1,382,348). For a given query Jena reorders the statements,
such that more selective statements are executed first. To illustrate this, consider the
query execution plan that can be found in Figure 6.2, which depicts the optimization
process for a query with three triples. At every stage, one fact is selected from the
input-set (>> Input). The selected fact is marked by “<< Output” In our example
the optimizer knows that the size of the result set for <wordnet_person_100007846>
is extremely large. Therefore, one of the more selective statements is chosen first
(?x <actedIn> <Toy_Story 3>). The rest of the statements is then evaluated given the
already chosen statement. Thus, it does not make a difference in execution cost, whether

<type> <wordnet_person_100007846> or <actedIn> <Forrest_Gump> is chosen next.
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Step Selected triples Result size Action
1 <actedIn><Toy_Story_3> 10 continue
2 <actedIn><Toy_Story_3> 1 terminate
<actedIn><Forrest_Gump>
3 <actedIn><Toy_Story_3> 1 not considered
<actedIn><Forrest_Gump>
<type><person>

Table 6.5: Example for custom query execution

6.3.1 Intuition of the Approach

Our question generation scheme iteratively adds facts to a question graph. As part of
the procedure, the knowledge graph is queried multiple times to check for uniqueness
of the answer, given the selected triples, until a suitable combination of triples is found
(Section 4.1.3). Instead of running a full query at each step with just one additional
triple, our approach stores the result set of intermediate queries and joins it with the
result set of the subsequent query. Furthermore, it exploits the fact that when an answer
to a query is unique, using only a subset of the already selected triples, it terminates
without considering additional triples. This is possible since adding more triples to
an already unique query will not change the uniqueness. As a further improvement,
the algorithm calculates the joins of triples that do not indicate types first, since these
queries are mostly less expensive. This is due to the fact that their result sets are smaller
on average. For demonstrative purposes, consider the example that can be found in
Table 6.5. Here, the algorithm can terminate after two steps, since the result set of
<actedIn> <Toy_Story_3> joined with the result set of <actedIn> <Forrest_Gump> is
already one, thus the answer is unique. The third step does not need to be considered,

which spares us the expensive query 7x <type> <person>.

6.3.2 Evaluation of the Results

The results for our empirical evaluation can be inspected in Table 6.6. We ran four
tests with different inputs and measured the average time to generate a question. The
tests where executed for 100 questions were each question was generated for a different
entity picked at random (Test number 1 and 3). In contrast, Tests 2 and 4 were executed
on 100 questions about a single entity only. We also varied the number of minimum
triples in the question, which we hoped would give our algorithm an advantage, since
it stores the joined sets of the already executed queries. Unfortunately, there was no
improvement for Tests 1 through 3. This was due to the fact that for joining the sets,

expensive type queries had to be made. For example, consider the join of the result
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Test No. Test Case ‘ min triples ‘ naive (ms) \ custom (ms) ‘
1 random entities 3 602 1875
2 single entity 3 131 234
3 random entities ) 313 744
4 single entity ) 111 64

Table 6.6: Time measurements for query execution methods

sets <actedIn> <Forrest_Gump> and <type> <wordnet_person>. The second set is an
highly expensive query, since its result set is of size larger than 1 million entities. After
changing the implementation that non-type facts were executed first the execution time
for test 4 was halved. This may be attributed to the fact that unique answers about a
single entity can be found after adding only few non-type facts and therefore omitting
expensive type queries. Based on these results, we did not further pursue this direction

of research.

6.4 Evaluation Summary

In our first user study we find that labeling questions with absolute difficulty is not an
easy task for humans, since the task has a subjective component. Nevertheless, as part
of our study on question difficulty 4.3 we find that it is possible to capture this notion.
The results of our experiments show that it is possible to standardize question difficulty
to some extent by building a difficulty classifier that was able to correctly classify 66.4%
of the questions. In a second user study we show that on questions generated by the
system, the same classifier achieves moderate agreement with human difficulty judgments
in terms of relative and absolute difficulty estimates. This is the first system that tackles
this specific task, to the best of our knowledge and even though our estimates only
moderately agree with human judgments, we consider our insights into question difficulty
as valuable. We believe that our findings show the potential of future research in this

area, where our system could serve as a baseline.
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Conclusion & Future Work

In this thesis we presented a novel approach for generating questions using semantic
information from a knowledge graph. From a high-level point of view, our system takes
a category and difficulty level as input and outputs a question in natural language. To
achieve this, we obtained a category-entity mapping from Wikipedia, by building a
category graph. From the set of entities we retrieve from the category graph, we select a
target entity which is used as the answer to the question. Then, our question generation
algorithm retrieves all facts from the knowledge graph and decides which triples are
selected to form the question’s clues. The question is then posed as a SPARQL query,
which is queried to the knowledge graph to check for the uniqueness of the question’s

answer.

In addition, we developed a verbalization scheme, that turns the intermediate SPARQL
query into a natural language question. We make use of a custom pattern-based technique,
which mimics Jeopardy!-clue articulation of the question. Furthermore, we cater to
question variety by finding meaningful paraphrases for relations and elaborate a novel

method to find important types for a given entity.

For being able to estimate the difficulty of a question, we trained a logistic regression
classifier on Jeopardy! training data, which could correctly classify 66% of training in-
stances using ten-fold cross-validation. As features we identified the metrics of popularity
of entities, selectivity of a relation and coherence of an entity pair, which are measured
using statistical methods in conjunction with the knowledge graph. We then outlined
an approach to integrate the difficulty estimate into the question generation process to

guide the search for a question with the desired difficulty level.

To evaluate the effectiveness of our method, we conducted an extensive user study,

which measured the agreement of human judges with our difficulty classifier. First,
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we evaluated the classifier’s performance in terms of relative question difficulty. For
the ranking of a total of 150 question pairs, our classifier reached moderate agreement
with human evaluators, and an average Kendall’s 7 of 0.563. Second, we measured the
agreement in terms of absolute question difficulty estimation. After 150 questions were
evaluated as being easy or hard by the participants of our study, the evaluators reached
moderate agreement with the difficulty classifier, which was measured using Cohen’s
Kappa (k = 0.427).

Future work could be conducted in the domain of extending the question difficulty
classifier’s features, to be able to handle questions that are not entirely composed of
entities and classes. For the purpose of making questions more compelling, it would
be interesting to find features to estimate difficulty on literals. Since estimating the
exact number of inhabitants of, for instance, Berlin, is a very difficult task, it would be

advantageous to conduct research on finding appropriate ranges for literals, as well.

In the context of question features, it would be beneficial to investigate the effect of
different data sources to measure popularity of an entity. Usable resources could be the
number of mentions in a large, annotated text corpora, the entity’s Wikipedia article

length, the number of search queries issued about the entity, etc.

Moreover, our method could be extended to pose questions with not only one entity as
an answer, but for questions that ask for a set of entities. Another stage of research
could be conducted on the impact of question difficulty for questions that are not made
up of “star queries”. This would enable us to formulate questions that ask for the football

player, whose spouse is a former Spice Girl, for example.

Further research could address the granularity of difficulty classes. In contrast to the
binary classifications, one could categorize questions into multiple hardness categories.
A prominent example is Jeopardy!, where clues are presented in five difficulty levels. A
further problem that could be inspected is measuring the amount that the question’s
language (verbalization) contributes to the difficulty. This would be highly related to
measuring the reading difficulty of text. Work in that problem domain was discussed in

Section 3.2.

As mentioned before, question difficulty is subjective. Therefore, it would be beneficial
to find a way of personalizing the estimation scheme. It could be imagined to build
a customized difficulty estimator that takes the domain knowledge of the player into
account. Requiring the player beforehand to answer a questionnaire with domain specific
questions of various difficulties to estimate her level of expertise, could be an approach

to address this problem.
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Additional improvements could be made in the verbalization scheme. To generate more
natural sounding questions, research could be invested in finding an alternative to our
template-based approach. If the resulting questions would be similar enough to those
written by humans, these questions could even be used to train a question answering

system.

A further application where our system could be the basis for future work is in the
domain of finding fraudulent users in crowdsourcing communities. There our approach
could generate multiple-choice answers, by generating semantically close distractors. The
distractors could be generated by removing one or multiple triples from the question’s
query. A distractor, related to the answer could then be selected from the result set of this
relaxed query. Distractors that are not related to the answer could be found as entities
that are selected at random and have no triples in common with the correct answer.
Having this automatically generated gold standard of question-to-answer mappings, it
would be possible to statistically discriminate between users that just randomly click
through the data and users who click on answers that are either correct or closely related
to the correct answer. Here the assumption is, that users who more question correct on

average, are more likely to seriously work on the present crowdsourcing task.
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Poster shown at WWW 2015

The poster depicted in Figure A.1, was presented to attendants of the 2015 World Wide

Web Conference, as part of the poster session.
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Figure A.1: Poster shown at the 2015 International World Wide Web Conference in
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Anecdotal Results

Category

Theoretical_physicists

Difficulty

easy

Target Entity

<Albert_Einstein>

Query SELECT ?x WHERE {

7x <wasBornIn> <Ulm> .

?x rdf:type <wordnet_physicist_110428004> .

?x <worksAt> <ETH_Zurich>

}

Verbalization This physicist was born in Ulm and works at ETH Zurich.
P(easy) 0.7394
Category Theoretical_physicists
Difficulty hard

Target Entity

<Albert_Einstein>

Query SELECT ?x WHERE {
?x <hasAcademicAdvisor> <Alfred Kleiner> .
?x <isMarriedTo> <Mileva_Marié> .
?x rdf:type <wordnet_physicist_110428004>
}
Verbalization This physicist is a student of Alfred Kleiner and is married
to Mileva Maric.
P(easy) 0.4951
Category Theoretical_physicists
Difficulty hard

Target Entity

<Albert_Einstein>
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Query SELECT ?x WHERE {
?x <influences> <Emile_Meyerson> .
?x <worksAt> <University_of_Zurich> .
?x rdf:type <wordnet_physicist_110428004>
}
Verbalization This physicist has influence on Emile Meyerson and works at
University of Zurich.
P(easy) 0.4310
Category American_billionaires
Difficulty easy

Target Entity

<Bill_Gates>

Query SELECT ?x WHERE {
?x rdf:type <wordnet_billionaire_110529684> .
?x <created> <Microsoft> .
?x <livesIn> <Medina,_Washington>
}
Verbalization This billionaire created the company Microsoft and lives
in Medina, Washington.
P(easy) 0.8345
Category American_billionaires
Difficulty hard

Target Entity

<Bill_Gates>

Query SELECT ?x WHERE {
7?x <created> <Cascade_Investment> .
?x rdf:type <wordnet_billionaire_110529684> .
?7x <wasBornIn> <Seattle>
}
Verbalization This billionaire was born in Seattle and created the company
Cascade Investment.
P(easy) 0.4491
Category American_billionaires
Difficulty hard

Target Entity

<Bill_Gates>
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Query SELECT ?x WHERE {
7x <owns> <GAMCO_Investors> .
?x rdf:type <wordnet_philanthropist_110421956> .
?x <graduatedFrom> <Harvard_University>
}
Verbalization This philanthropist owns GAMCO Investors and is an alumnus of
Harvard University.
P(easy) 0.0862
Category American_folk_singers
Difficulty easy

Target Entity

<Bob_Dylan>

Query SELECT ?x WHERE {
?x <created> <Knocked_QOut_Loaded> .
?x rdf:type <wordnet_singer_110599806> .
?x <created> <Mr._Tambourine_Man>
}
Verbalization This singer created the album Knocked Out Loaded and
the song Mr. Tambourine Man.
P(easy) 0.9039
Category American_folk_singers
Difficulty easy

Target Entity

<Bob_Dylan>

Query SELECT ?x WHERE {
?x rdf:type <wordnet_musician_110340312> .
?x <created> <Ain’t_Talkin’> .
?x <wasBornIn> <Duluth,_Minnesota>
}
Verbalization This musician was born in Duluth, Minnesota and created
Ain’t Talkin’
P(easy) 0.7920
Category American_folk_singers
Difficulty easy

Target Entity

<Bob_Dylan>
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Query SELECT ?x WHERE {
?x <created> <Tonight_I’11_Be_Staying_ Here_with_You> .
?x <influences> <Jason_Myles_Goss> .
?x rdf:type <wordnet_songwriter_110624540>
}
Verbalization This songwriter has influence on Jason Myles Goss and
created Tonight I'll Be Staying Here with You.
P(easy) 0.6766
Category Pioneers_of_music_genres
Difficulty easy

Target Entity

<Elvis_Presley>

Query SELECT ?7x WHERE {

?x rdf:type <wordnet_performer_110415638> .

?x <created> <Jailhouse_Rock_(song)> .

?x <created> <Viva_Las_Vegas_(song)>

}

Verbalization This performer created Jailhouse Rock and Viva Las Vegas.
P(easy) 0.9241
Category Pioneers_of_music_genres
Difficulty easy

Target Entity

<Elvis_Presley>

Query SELECT 7x WHERE {

?x rdf:type <wordnet_musician_110340312> .

?x <created> <Love_Me_Tender_(song)> .

?x <created> <Blue_Christmas_(song)>

}

Verbalization This musician created the song Love Me Tender and Blue Christmas.
P(easy) 0.7887
Category Pioneers_of_music_genres
Difficulty easy

Target Entity

<Elvis_Presley>

Query

SELECT ?7x WHERE {
?x <influences> <John_ac_Alun> .
?x <actedIn> <The_Trouble_with_Girls_(film)> .

?x rdf:type <wordnet_artist_109812338>




Appendix B Anecdotal Results 95

Verbalization This artist acted in The Trouble with Girls and has influence
on John ac Alun.

P(easy) 0.6750

Category Internet_companies_of_the_United_States

Difficulty easy

Target Entity <Google>

Query SELECT ?x WHERE {
?x rdf:type <wordnet_company_108058098> .
?x <owns> <Freebase> .
?x <created> <Android_(operating_system)>
}
Verbalization This company owns Freebase and created Android.
P(easy) 0.5620
Category Internet_companies_of_the_United_States
Difficulty hard
Target Entity <Google>

Query SELECT ?x WHERE {
<Preston_McAfee> <worksAt> 7x .
?x rdf:type <wordnet_company_108058098> .
?x <owns> <Boston_Dynamics>
}
Verbalization This company owns Boston Dynamics and has employee
Preston McAfee.
P(easy) 0.0922
Category Internet_companies_of_the_United_States
Difficulty hard
Target Entity <Google>

Query SELECT ?x WHERE {

?x rdf:type <wordnet_company_108058098> .

?x <owns> <Neotonic_Software> .

<Udi_Manber> <worksAt> 7x

}

Verbalization This company owns Neotonic Software and has employee Udi Manber.
P(easy) 0.0623
Category 19th-century_American_writers

Difficulty

easy
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Target Entity

<Mark_Twain>

Query SELECT ?x WHERE {
?x <created> <The_Adventures_of_Tom_Sawyer> .
?x rdf:type <wordnet_writer_110794014> .
?x <created> <A_Conn._Yankee_in_King_ Arthur’s_Court>
}
Verbalization This writer created the novel The Adventures of Tom Sawyer
and A Connecticut Yankee in King Arthur’s Court.
P(easy) 0.8734
Category 19th-century_American_writers
Difficulty easy

Target Entity

<Mark_Twain>

Query SELECT ?x WHERE {
?x <influences> <Ken_Kesey> .
?x rdf:type <wordnet_writer_110794014> .
?x <created> <Huckleberry_Finn>
}
Verbalization This writer influences Ken Kesey and created the fictional
character Huckleberry Finn.
P(easy) 0.8553
Category 19th-century_American_writers
Difficulty hard

Target Entity

<Mark_Twain>

Query SELECT ?x WHERE {
?x <influences> <Des_Dillon> .
?x rdf:type <wordnet_writer_110794014> .
?x <hasChild> <Jean_Clemens>
}
Verbalization This writer is the parent of Jean Clemens and has influence
on Des Dillon.
P(easy) 0.4342
Category Film_directors
Difficulty easy

Target Entity

<Steven_Spielberg>
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Query SELECT ?x WHERE {
?x rdf:type <wordnet_producer_110480018> .
?x <directed> <Jaws_(film)> .
?x <created> <E.T._the_Extra-Terrestrial>
}
Verbalization This producer created the movie E.T. the Extra-Terrestrial
and directed Jaws.
P(easy) 0.9317
Category Film_directors
Difficulty easy

Target Entity

<Steven_Spielberg>

Query SELECT ?x WHERE {
?x <directed> <Catch_Me_If You_Can> .
?x <directed> <Jurassic_Park_(film)> .
?x rdf:type <wordnet_manufacturer_110292316>
}
Verbalization This manufacturer directed Catch Me If You Can and
Jurassic Park.
P(easy) 0.9210
Category Film_directors
Difficulty easy

Target Entity

<Steven_Spielberg>

Query

SELECT ?x WHERE {

?x <directed> <The_Terminal> .

?x rdf:type <wordnet_film_director_110088200> .

?7x <directed> <Minority_Report_(film)>

}

Verbalization

This film director is the director of The Terminal
and Minority Report.

P(easy)

0.8944

Table B.1: Example questions generated by the system
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