An Information Retrieval Framework for Contextual Suggestion Based on Heterogeneous Information Network Embeddings

Dominic Seyler, Praveen Chandar, Matthew Davis

dseyler2@illinois.edu, praveenr@spotify.com, matthew.davis@invitae.com

Overview

- Contextual suggestion: User query is augmented by user model (i.e. the context of the query)
- User model can be previously rated (or viewed) documents that will be considered at query time
- Idea: Domain expert models query context using Heterogeneous Information Network (HIN) embeddings.
- Application: 1) run query using "regular" IR engine (e.g. OKAPI BM 25) 2) re-rank retrieved documents by taking HIN embeddings into account

Problem Formulation

- Focus on TREC Contextual Suggestion task, where the IR system is assisting a user in planning a trip to a target city.
- input to the system is a list of requests (R) and user profiles (U), where user profiles are a list of rated attractions (preferences), gender and age.
- The output is a ranked list of attractions not in the preference list, ordered by their posterior probability conditioned on the user profile and request

$$input = \{R, U = \{info, pref\}\}$$

$$R = \{group, season, trip_type, duration, location\}$$

$$info = \{gender, age\}$$

$$pref = \left\{(attraction, rating, tags)^{1,...,k}\right\}$$

 $output = \{P(attraction|R, U) | \forall attraction \notin pref \}$

HIN Modeling

Meta-Path

Node Type	Description
u	User
\mathcal{L}	Location
${\mathcal A}$	Attraction
${\mathcal T}$	User tags/endorsements
${\mathcal B}$	Token in attraction's business name
W	Token on attraction's homepage
C	Category tags from attraction's profile page
3	Named entities in attraction's profile page

T1: Node Types

F1: Topology

wieta-Patii	Semantics
\mathcal{A} – \mathcal{U}	Attractions were rated by a user.
$\mathcal{A} - \mathcal{T} - \mathcal{U}$	Attractions were tagged/endorsed by a user.
$\mathcal{A} - \mathcal{T} - \mathcal{A} - \mathcal{U}$	Attractions share tags/endorsements with other attractions that were rated by a user.
$\mathcal{A} - \mathcal{B} - \mathcal{A} - \mathcal{U}$	Attractions share business tokens with other attractions that were rated by a user.
$\mathcal{A} - W - \mathcal{A} - \mathcal{U}$	Attractions share words on web page with other attractions that were rated by a user.
$\mathcal{A} - C - \mathcal{A} - \mathcal{U}$	Attractions belong to the same category as other attractions that were rated by a user
$\mathcal{A} - \mathcal{E} - \mathcal{A} - \mathcal{U}$	Attractions mentioning the same entities as other attractions that were rated by a user

T2: Meta-Path Semantics

LTR Framework

- After HIN embeddings are trained for each meta-path, the similarity of objects within the HIN can be used as features in a learning to rank (LTR) framework.
- Since each of the meta-paths capture different semantics we decided to learn a parameter for each meta-path separately.

$similarity(n_1, n_2 M) = cos(v_{n_1}^M, v_{n_2}^M) =$	$\frac{v_{n_1}^M * v_{n_2}^M}{ v_{n_2}^M _2 v_{n_2}^M _2}$	(1)
	HUM. HOHOM. HO	

$$f(n_1, n_2) = \{similarity(n_1, n_2 | M_i)\}, \forall i \in \{1...N\}$$
 (2)

$$F(a_i|r_i,u_i) = f(a_i,u_i), \forall a_i \in A^{candidates}$$
(3)

Experiments

Node Types	NDCG@5
$\{\mathcal{U},\mathcal{L},\mathcal{A}\}$.2400(±.0005)
$\{\mathcal{U},\mathcal{L},\mathcal{A},\mathcal{T}\}$.2565(±.0010)
$\{\mathcal{U},\mathcal{L},\mathcal{A},\mathcal{T},\mathcal{B}\}$.2932(±.0006)
$\{\mathcal{U},\mathcal{L},\mathcal{A},\mathcal{T},\mathcal{B},\mathcal{W}\}$.2986(±.0003)
$\{\mathcal{U},\mathcal{L},\mathcal{A},\mathcal{T},\mathcal{B},\mathcal{W},\mathcal{C}\}$.3081(±.0004)
$\{\mathcal{U}, \mathcal{L}, \mathcal{A}, \mathcal{T}, \mathcal{B}, \mathcal{W}, \mathcal{C}, \mathcal{E}\}$.3206(±.0003)

T3: More Fine-grained Representations of Documents Improve Performance.

REFERENCES

Jingbo Shang et al. *Meta-Path Guided Embedding for Similarity*Search in Large-Scale Heterogeneous Information Networks (2016).

Chuan Shi et al. A survey of heterogeneous information network analysis. IEEE Trans. Know. and Data Eng (2017).

Top-k	TFIDF	\mathcal{X}^2	MI
10	.3309(±.0004)	.2900(±.0003)	.3176(±.0005)
50	.3157(±.0004)	.3183(±.0004)	.2982(±.0003)
100	.3246(±.0003)	.3105(±.0005)	.3159(±.0005)
500	.3294(±.0001)	.2937(±.0005)	.2996(±.0007)
1000	.3163(±.0006)	.3135(±.0006)	.3079(±.0002)

T4: Reduction of Graph Sparsity using Feature Selection Methods Improves Performance.

System	NDCG@5	P@5	MRR
DUTH_knn (debugged) [4]	.3388	.4690	.6697
This work	.3309	.4476	.6475
Laval_batch_3 [5]	.3281	.5069	.6501
USI5 [1]	.3265	.5069	.6796
bupt_pris_2016_cs.24_max [11]	.2936	.4483	.6255
UAmsterdamDL [2]	.2824	.4448	.5924

T5: Comparison to Other Systems