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Abstract
Suspended1 accounts are high-risk accounts that violate the
rules of a social network. These accounts contain spam, of-
fensive and explicit language, among others, and are incred-
ibly variable in terms of textual content. In this work, we
perform a detailed linguistic and statistical analysis into the
textual information of suspended accounts and show how in-
sights from our study significantly improve a deep-learning-
based detection framework. Moreover, we investigate the util-
ity of advanced topic modeling for the automatic creation
of word lists that can discriminate suspended from regular
accounts. Since early detection of these high-risk accounts
is crucial, we evaluate multiple state-of-the-art classification
models along the temporal dimension by measuring the mini-
mum amount of textual signal needed to perform reliable pre-
dictions. Further, we show that the best performing models
are able to detect suspended accounts earlier than the social
media platform.

1 Introduction
Social media platforms are an important outlet for social
interaction, but these platforms are riddled with deceitful
users that engage in high-risk activities. These accounts are
usually suspended by a platforms for various reasons: Twit-
ter for instance, suspends accounts for spamming, security
risks (e.g., account was compromised by a malicious entity)
or user-reported, abusive behavior (Twitter 2021). Account
suspension is a common and serious threat to the homogene-
ity of a platform, as it was shown that half of the Twitter ac-
counts created in 2014 were ultimately suspended (Wei et al.
2015).

In order to maintain a better ecosystem, social network
providers and scientific researchers have put great efforts
into distinguishing regular from spam accounts (Almaatouq
et al. 2016; Khan et al. 2018; Nilizadeh et al. 2017). How-
ever, in our manual analysis (Section 7) we find that only
an estimated half of suspended accounts are spam accounts.
Thus, spam classification methods seem to be inapplicable
and specialized methods for suspended accounts are duly
needed. Specialized detection methods, such as Volkova and
Bell (2017), have proposed an array of features, but have not
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performed a thorough investigation of state-of-the-art deep
models for the task and have not evaluated timely detection.
Investigative work on suspended accounts, such as Thomas
et al. (2011), have performed measurement studies related
to the underground market of spamming, however they have
not studied the textual content of suspended and benign ac-
counts.

Many works in the social media domain, such as (Al-
maatouq et al. 2016; Karimi et al. 2018; Ruan et al. 2016),
highlight the importance of behavioral characteristics, i.e.,
profile attributes and social interactions, to detect malicious
users in Twitter. A major drawback is that behavioral prop-
erties are much harder to observe compared to the posting of
text on social media. On top of that, most behavioral prop-
erties are not easily obtainable, since they require access
to highly sensitive information about the users of a social
network. Another challenge with behavioral features is the
sparse integration of suspended accounts into the social net-
work. It was shown that 89% of suspended accounts have
fewer than ten followers on Twitter (Thomas et al. 2011).
To avoid the effort of building a friendship network that is
wide enough to be useful, malicious users usually make use
of textual posts. Posts do not require the suspended account
to integrate into the social network to reach a broad audi-
ence (Thomas et al. 2011) and do not necessarily exhibit
abnormal behavioral patterns (Almaatouq et al. 2016). Fur-
thermore, the malicious intend is much more difficult to ob-
fuscate in textual output since the meaning of words cannot
be changed at will. Therefore, we hypothesize that textual
information of social media posts can play a significant role
in helping to detect suspended accounts.

For the aforementioned reasons, we focus on the textual
information on Twitter. We conduct statistical analyses to
show that tweets themselves are helpful in distinguishing
regular from suspended accounts (Section 3.2). For exam-
ple, we find that suspended accounts are more likely to re-
peat words, which results in a much smaller vocabulary for
the account (Figure 1b). However, we also see that in or-
der to hide their intentions, malicious accounts behave simi-
larly to regular users: They write posts with a similar amount
of words as regular users (Figure 1d), retweet as often as
normal users do (Figure 1g), etc. Moreover, we show that
suspended accounts avoid using common spam words (Sec-
tion 3.3). By exploiting a spam word list, we observe that



popular spam words cannot help differentiate suspended ac-
counts from regular users (Figure 1i), even though many
accounts are suspended for spreading spam (Thomas et al.
2011). To counteract, we automatically discover a latent
word list (Table 3) that discriminates suspended accounts
from regular users by employing an advanced topic model,
namely Foreground/Background LDA (FB-LDA) (Tan et al.
2014). In our analysis we show that this list can help dis-
tinguish regular and suspended accounts significantly better
than the list of common spam words (Figure 1j).

Num. Tweets >25 >50 >75 >100
Perc. Accounts 87.6% 51.62% 37.39% 29.19%
Num. Accounts 147,209 86,750 62,834 49,060

Table 1: Number of tweets of suspended accounts.

We further study the problem of suspended account de-
tection. Table 1 shows the statistics of suspended accounts
we collected from Twitter. In our dataset, 87.6% of mali-
cious accounts have posted more than 25 tweets before they
get suspended by the platform, which can be seen as ev-
idence that Twitter does not take immediate action when
users start to tweet something deceitful. In this work, we
aim to address this issue by detecting suspended accounts
with as few tweets as possible. We propose to utilize differ-
ent state-of-the-art learning models on the textual informa-
tion of accounts. Our empirical experimental studies show
that we can reliably distinguish (with an accuracy above
80%) suspended accounts from normal users, when only 10
tweets are observed at inference time. The experiments fur-
ther show that we can reliably detect (with an accuracy of
78%) suspended accounts 15 tweets earlier than Twitter2.
Even though we use Twitter as our data source, our methods
are general enough to be applicable to any platform that uses
textual content.

The contributions of this paper are the following:
1. We utilize the posting behavior of Twitter accounts to

show that tweets themselves are helpful in distinguishing
regular from suspended accounts. Given only the textual
information of tweets, we study both the statistical and
linguistic differences for suspended and regular accounts.

2. Based on the posting behavior of Twitter accounts, we
study the task of detecting suspended accounts with as
few tweets as possible. We implement several state-of-
the-art deep learning models and compare them in terms
of minimum textual information needed for making reli-
able predictions.

3. We study how early these methods can detect that an ac-
count will be suspended in the future. By using a sliding
window over the posted tweets of an account, we investi-
gate at what time point the predictive models can discover
abnormal posts that indicate account suspension.

2Since suspended accounts on Twitter are partly user reported,
this setup is not re-creating Twitter’s automated detection algo-
rithm. Instead, we see it as an extension to the existing automated
detection framework, that implicitly incorporates user feedback.

4. Given our analysis on posting behavior, we study how
these insights can be incorporated into our models for
suspended account detection. We do this by selecting the
most promising statistical features and integrate them into
the machine learning framework.

2 Related Work
There are few works that have investigated suspended ac-
counts. Similar to our goal, Volkova and Bell (2017) tackles
the prediction of deleted and suspended accounts on Twit-
ter. Even though the authors study the effectiveness of many
features, the paper lacks an extensive study of state-of-the-
art deep neural networks for the task. The work solely in-
vestigates LSTM networks, which we found are less suit-
able for suspended account detection than CNNs. The work
treats suspended and deleted account detection as a predic-
tion task, but does not evaluate any temporal aspects (e.g.,
how soon can these accounts be detected). Thomas et al.
(2011) leverages suspended accounts to conduct an analy-
sis of Twitter spam by investigating the activity and posting
patterns of spammers, abuse of URL short-listing and how
spam can be purchased in the underground economy. In con-
trast to our work, a linguistic analysis of suspended and be-
nign accounts was not executed.

Substantial research has been undertaken into spam ac-
count detection: For instance, Sculley and Wachman (2007)
performs an comparative analysis of different text clas-
sification methods for spam detection. Benevenuto et al.
(2010) proposes to use numerical features, such as number
of tweets, for classification. Lee, Caverlee, and Webb (2010)
uses social honeypots to analyze spammers’ behavior and
to obtain classification labels. Martı́nez-Romo and Araujo
(2013) detects spam messages by comparing two language
distributions, estimated on the tweet and target webpage of a
tweet’s URL. Almaatouq et al. (2016) uses graph-based fea-
tures, such as in/out-degree of the follower-followee graph,
as features. Similarly, Khan et al. (2018) derives features
based on authority and hub scores of users as features. Gupta
et al. (2018) models users and tweet content in a hetero-
geneous network and uses an active learning framework to
classify if new spam is part of these campaigns. Nilizadeh
et al. (2017) clusters the tweet space by topics and derives
features that measure the propagation of messages among
different clusters. Adewole et al. (2019) proposes the use of
profile-based features, such as location information and re-
quires monitoring of users over extended periods. Sun et al.
(2020) introduces a system for detecting Twitter spam in
near real-time by combining features extracted from user ac-
counts and tweet content. Even though spam detection is a
related task to ours, we find in our manual analysis (Sec-
tion 7) that only half of suspended accounts are spam ac-
counts. Thus, spam classification methods are rendered inap-
plicable and specialized methods for suspended accounts are
needed. Furthermore, we find that some previously proposed
numerical features are not discriminative for distinguishing
suspended accounts. Therefore, we propose and evaluate a
number of novel features for this task.

Another line of work has focused on the detection of com-
promised accounts: Egele et al. (2017) creates behavioral



user profiles using certain user-specific characteristics, such
as the time a user is active. VanDam, Tang, and Tan (2017)
performs a measurement study and derives content-based
features. Seyler, Li, and Zhai (2020) proposes a method that
divides the tweet space randomly into compromised/benign
tweets and uses the difference in language distributions as
features. Karimi et al. (2018) utilizes LSTM networks to
capture temporal dependencies to detect compromised ac-
counts. VanDam et al. (2018) uses an unsupervised learn-
ing framework, where multiple views on a user profile (i.e.,
term, source, time and place) are encoded separately and
then mapped into a joint space. This joint representation is
then used to retrieve a ranking of compromised accounts.
Building on this work, VanDam et al. (2019) uses and
encoder-decoder framework to build low-dimensional fea-
ture vectors for users and tweets. The residual errors form
both encoders are used in a supervised setting to predict
compromised accounts. Here, residual errors will be higher
if tweets were not written by a certain user, therefore in-
dicating an account compromise. Ruan et al. (2016) de-
tects behavioral anomalies by monitoring all internal and
external interactions of Facebook accounts. Another work
that makes use of behavioral profiles for is Velayudhan and
Bhanu (2020), where frequency of benign and anomalous
tweets are used for compromised account detection. Further-
more, Wang et al. (2020) models a user’s expression habits
by utilizing a supervised analytical hierarchy process for
feature selection. A major drawback of these methods is that
they rely on the integration of the accounts into the social
network or use features that are only accessible by the social
network provider.

Different works have analyzed malicious behavior on
Twitter: Grier et al. (2010) presents the first comprehen-
sive study into spam on Twitter. Thomas et al. (2014) stud-
ies the consequences if users fall victim to a malicious ac-
count takeover. Davidson et al. (2017) analyses and automat-
ically identifies hate speech on Twitter by leveraging crowd
sourcing and training a classifier on annotated data. In con-
trast, we study the linguistic and statistical properties of sus-
pended accounts and provide novel insights for early detec-
tion, which were not covered by previous studies.

3 Analysis of Suspended Accounts
For our analysis we make use of a public Twitter dataset.
First, we perform a statistical analysis on each account’s
posts and find that suspended account are distinguishable on
select behavioral characteristics that have not been investi-
gated by prior work. We then focus on the linguistic aspects
of suspended accounts to see whether their use of language
can discriminate them.

3.1 Dataset
Our textual information is drawn from Yang and Leskovec
(2011), which is a large Twitter corpus of roughly 467 mil-
lion posts from 20 million users, covering a seven month
period from June to December 20093. We derive the labels

3Models trained on this dataset might not perform as effectively,
when deployed as part of a current detection system. However, we

of whether an account is suspended directly from Twitter
by checking if the URL of a user account is re-directed to
https://twitter.com/account/suspended.

We perform a number of filter and sampling steps to the
original dataset from Yang and Leskovec (2011): First, we
remove all accounts with less than 20 tweets to ensure that
the accounts have sufficient textual information for train-
ing and testing of our models. For the remaining accounts,
we retrieve the user profile from Twitter by accessing each
user’s URL and then recording the HTTP response. From
the server response we can also infer the exact date that the
account was created (in case it was not suspended), which is
embedded in the source code of each user’s page.

We remove user accounts that were created after Decem-
ber 31, 2009 (the last date of the tweet crawl). Since we
cannot infer the exact date of suspension for suspended ac-
counts, we remove all suspended accounts that tweeted after
December 1, 2009. Here, we hypothesize that suspended ac-
counts that haven’t tweeted for one month are more likely
to be suspended before the end of our crawl. Although our
method is language-independent, we chose to restrict the
dataset to accounts that contain a majority of English tweets.
Since only 5.1% percent of accounts are suspended, the dis-
tribution of positive and negative class labels is highly im-
balanced. To counteract this, it is common in supervised
learning frameworks to balance datasets to learn a better
discriminative function. Balanced datasets were previously
used for deleted and suspended account detection (Volkova
and Bell 2017), compromised account detection (Karimi
et al. 2018; VanDam et al. 2019; Seyler, Li, and Zhai 2020)
and spam detection (Benevenuto et al. 2010; Lee, Caverlee,
and Webb 2010; Nilizadeh et al. 2017; Adewole et al. 2019).
To create a balanced dataset (i.e. the same amount of sus-
pended and regular accounts), we perform undersampling
where for each suspended account we select one regular ac-
count at random without replacement. The resulting dataset
has a total of 166,642 accounts (see Table 4 for more de-
tails).

3.2 Statistical Analysis
As introduced earlier, some related work on studying sus-
pended accounts has focused on social structure, informa-
tion propagation or spam campaigns. Different from previ-
ous work, our analysis of suspended accounts focuses on a
user’s posting behavior. Posting behavior includes the time
of posting and the posts’ content, which is the most easily
observable information to analyze or detect suspended ac-
counts. Specifically, we first analyze various statistical char-
acteristics of suspended accounts in our dataset (“†” feature
is novel; “‡” feature is a distinguishing feature, which we
integrate into our models).
Average Time Between Tweets†‡. Measures the time gap
between postings (i.e., posting frequency). As found in pre-
vious work, 77% of accounts employed by spammers are

expect that after re-training the models on more recent data the
performance would be similar. The models we develop are also not
specific to Twitter, so it’s stricter character limit of 2009 is unlikely
to affect performance.



suspended within one day (Thomas et al. 2011). So spam-
mers are anxious to post in a short time window. To ver-
ify this, we plot the amount of users for different time gaps
in Figure 1a. It can been seen that suspended accounts post
much more frequently than regular users.

Vocabulary Size†‡. The vocabulary size for each account
is shown in Figure 1b, where we find that suspended ac-
counts have smaller vocabulary sizes. We hypothesize that
malicious accounts often have narrow intentions and are
forced to use a small set of words to deliver their message.
In contrast, regular users may talk about more diverse topics,
which we discuss in Section 3.3.

Average Number of URLs‡. Including URLs in posts is
an effective way to post more information than what can be
contained in a 140 character tweet. It was found that ma-
licious actors need to use URLs to lure users to their tar-
get website, either for financial gains (Thomas et al. 2014)
or spreading misinformation (Egele et al. 2017). Figure 1c
confirms that suspended users use URLs more frequently.

Average Length of Tweets. Figure 1d shows the average
character length of Tweets for each user. This measure seems
not to be discriminative, since both kinds of accounts follow
a similar distribution.

Average Number of Stopwords. We observe that sus-
pended accounts use less stopwords (e.g., “and”), as shown
in Figure 1e. We hypothesise that regular users are inclined
to form complete sentences, whereas malicious accounts try
to post as many informative words possible. However, the
difference in distributions is much smaller when compared
with the first three features above.

Average Number of OOV Words†. To find the number of
out-of-vocabulary (OOV) words, we create a dictionary by
removing the top 10% of words in terms of document fre-
quency and by removing infrequent words (i.e. words that
appear in less than 20 accounts). We then check the use of
words outside our vocabulary for each user. The results are
shown in Figure 1f. Surprisingly, suspended accounts have
similar behaviors with regular accounts in OOV word usage.

Average Number of Retweets. In Figure 1g we explore the
average number of retweets for each account. Suspended ac-
counts have more retweets than regular accounts but the dif-
ference is not very distinguishable.

Average Number of Hashtags. Previous work found that
malicious accounts tend to use popular hashtags of trend-
ing topics to attract a larger audience (Thomas et al. 2011).
We count the average number of hashtags in tweets per user
in Figure 1h. Even though hashtags seem to be effective
for spreading tweets, suspended accounts do not use an in-
creased amount of hashtags.

Percentage of Tweets that Contain Spam Words†‡. We
check whether the suspended accounts are distinguishable
from regular ones using common spam words. The spam
word list we exploited is taken from Adewole et al. (2019).
Tweets that contain at least one word in the spam list are
counted for each account. The percentage of tweets that con-
tain spam words for each account is shown in Figure 1i.

Surprisingly, we can not distinguish suspended and not-
suspended accounts from this perspective. Intuitively, sus-
pended accounts would use more spam words because many
engage in spamming behavior (Thomas et al. 2011). We
hypothesise that spammers pretend to be regular users and
avoid well-known spam words. Nonetheless, we believe that
spammers leave some linguistic clues in textual output even
when they avoid using certain words. In the following sec-
tion, we mine a special vocabulary of suspended accounts
with the help of an advanced topic model.

(a) Time Between Tweets† (b) Vocabulary Size†

(c) Average URLs (d) Length of Tweets

(e) Average Stopwords (f) Average OOV Words†

(g) Average Retweets (h) Average Hashtags

(i) Regular Spam Words (j) FBLDA Spam Words†

Figure 1: Features related to tweets and content. Novel fea-
tures are marked with a dagger (†).



Foreground Topics Background Topics
celebrity gossip followers day using use fast music news obama says new health times press care
dating free adult online years man seeking seeks daily twittascope today online dress perfect prom evening
death lord stone guilty throws stoned blasphemer uttering love day live playing listen today listening night
watch online free movie followers check site twitter great check new today good day just thanks
money make twitter home online free people business just legends nitto won branson race selling theatre

Table 2: Word with highest probability within topics using FB-LDA. Foreground topics are mined from suspended accounts,
background topics are trained on regular accounts and can contain words from suspended accounts.

3.3 Linguistic Analysis
Our goal is to find out whether suspended accounts exhibit
anomalies in their vocabulary and use of topics. For topic
analysis we employ Foreground and Background LDA (FB-
LDA) (Tan et al. 2014), which is a general framework for
mining “special” topics in a corpus by contrasting a se-
lected set of documents with a background set. The back-
ground set is believed to represent the general textual char-
acteristics of the corpus. FB-LDA maintains two series of
topic distributions, i.e., foreground topics and background
topics. Each word from a background document samples a
topic from the background topics. Each word from the con-
trasted document set has two choices: (a) choose a back-
ground topic; (b) choose a foreground topic if it is more fre-
quent in the foreground but not common in the background
set. The model inference produces two series of topic dis-
tributions. Usually, only foreground topics are considered
for further use in downstream applications. In this paper, we
consider all tweets of a user account as one document. Sus-
pended accounts are input to FB-LDA as foreground doc-
uments and regular accounts are set as background docu-
ments. The number of topics is set to 20.

Table 2 shows the top words for selected foreground and
background topics. Foreground topics (i.e., special topics
from suspended accounts) talk about marketing, (illegal)
downloads, adult dating and contain religious ranting. In
contrast, background topics look more general and discuss
daily life, news or politics. We also build a special vocabu-
lary based on foreground topics from FB-LDA, which can be
considered as an automatically generated spam word list. To
build this vocabulary, we select the ten words with highest
probability within all foreground topics. Using this new list
we redraw Figure 1i in Figure 1j. It provides a very different
result. Based on the special vocabulary mined by FB-LDA,
suspended accounts are quite distinguishable from regular
ones. We also compare ten words unique to each of the two
lists in Table 3. The words obtained from FB-LDA show that

FB-LDA List from (Adewole et al. 2019)
download dating save $ cash bonus
bucks online for free click here
gossip affair insurance gift certificate
xbox cheating great offer winner
fantasy software opportunity guarantee

Table 3: Words unique to each of the spam lists.

suspended accounts spread their information by using many
words that are not contained in common spam word lists.

4 Suspended Account Detection Framework
Based on the statistic and linguistic analysis of the twitter
dataset, we design a deep-learning framework for suspended
account detection. Two main components are included in
this framework, namely, word embeddings and deep nets.
Word embeddings are generated from tweets given some
pre-trained word vectors. Neural nets involve two alterna-
tives, one from tweets and one combination of both tweets
and selected auxiliary features described in Section 3.

4.1 Word Embedding
Words are represented as dense vectors in a low-dimensional
vector space, where words with syntax and semantic re-
lations tend to be close to each other. It is common to
train a neural network on a large, unannotated text cor-
pus to construct word embeddings. We use 200-dimensional
Glove (Pennington, Socher, and Manning 2014) word vec-
tors trained on Twitter to initialize the word embeddings.
Compared to the n-gram (i.e., one-hot) method, features
constructed from word embeddings are denser and less
prone to overfitting on the training data.

4.2 Deep Neural Network Models
We implement a Convolutional Neural Network (CNN)
model, which has been shown to be effective for text classifi-
cation (Kim 2014). In the model, multiple convolution filters
of different widths are sequentially applied to a sequence of
word embeddings. Subsequently, max-pooling is applied to
the output of the convolutional layer, the dropout operation
is employed on the max-pooling output and the obtained re-
sult is fed into a fully-connected layer. Finally, a softmax
layer is added. CNNs can reconstruct the high-level seman-
tic features from input word embeddings and improve the
training performance by weight sharing.

In our problem, we have a matrix of word vectors X ∈
RN×M with filter weights W ∈ RM×O and bias b, where
N refers to the number of documents, M refers to the num-
ber of unique words in all tweets and O refers to the dimen-
sion of hidden layers. Then, a single convolution cell ci is
described as:

ci = f(W>X+ b) (1)

where f is a non-linear transformation function, such as
ReLU (Dahl, Sainath, and Hinton 2013), which transforms



word vectors of M dimensions to ci ∈ RO×N hidden vec-
tors. The hidden vectors are stacked horizontally and the re-
sulting set is denoted as:

C = [c1, ..., ci, ..., cF ] (2)

where F refers to the number of filters and C refers to
the collection of all convolutions. Namely, we conduct F
such transformation via CNN and this will yield the fea-
ture matrix C ∈ RF×O×N . In order to reduce the com-
plexity, max-pooling is employed to reduce C to a matrix
C2 ∈ RF×O2×N , where O2 is smaller than O.

Features constructed by CNNs are undoubtedly power-
ful due to the multiple folds of filtering. However, the or-
der of tweets are not taken into consideration. This may
lead to some misrepresentation of the information. For ex-
ample, a tweet may refer to a concept or person in a previ-
ous tweet. Therefore, we add a Long Short-Term Memory
(LSTM) layer after the CNN layer, such that the output of
the CNN layer (per tweet) is used as input to the LSTM. The
last state of the LSTM is then used as a user representation
of all her sequential tweets and fed into a fully-connected
layer. Again, a softmax layer is added. with the following
equations (for simplicity, we ignore the subscripts of fea-
tures):

it = relu(Wixxt +Wimht−1) + bi (3)
ft = relu(Wfxxt +Wfmht−1) + bf

ot = relu(Woxxt +Womht−1) + bo

ct = ft � ct−1 + it tanh(Wcxxt +Wcmht−1) + bc

ht = ot � ct + tanh(ct−1)

Here t refers to each token of a tweet. As in other LSTM
literature (Hochreiter and Schmidhuber 1997), i refers to in-
put gates, f refers to forget gates, o refers to output gates, c
still refers to convolution cell and yet, in LSTM, c is divided
into T (the length of tweets) memory cells with each as ct, h
refers to hidden states and b refers to bias. The forget gates ft
allow the model to selectively ignore past memory cell states
and the input gates it allow the model to selectively ignore
parts of the current input. The output gates ot then allow the
model to filter the current memory cell for its final hidden
state. The combination of these gates present our model with
the ability to learn long-term dependencies among features
that were learned by CNN and reset these dependencies con-
ditioned on certain inputs. Commonly, the LSTM transition
function is an affine transformation followed by a point-wise
nonlinearity like the hyperbolic tangent function.

4.3 Deep Neural Networks with Auxiliary
Information Features

Besides word embeddings, we explore different auxiliary in-
formation features. In our previous study in Section 3.2 we
found that most previously proposed features are not very
discriminative in our problem setting. However, we do find
a few promising novel features including average time be-
tween tweets, vocabulary size and an automatically gener-
ated list of spam words. To use both social media text and
those features for making predictions, we make use of a fea-
ture concatenation mechanism to incorporate those features

into the fully connected layer. Hence, with those features
concatenated, our final predication layer becomes a layer of
mixture features as follows:

pt+1 = softmax

hT +

J∑
j=1

aj

 (4)

where T refers to the length of LSTM, aj refers to the av-
erage values of auxiliary information features. Namely, be-
sides hT , the fully connected layer sums up normalized av-
erage values of auxiliary features and together they make the
final predictions.

5 Experiment Setup
This section discusses our experiment design and setup. We
evaluate various deep neural network models on the test
dataset in terms of classification accuracy and F1 score. Ad-
ditionally, we compare deep neural network models to “tra-
ditional” (i.e., SVM) models.

5.1 Experiment Dataset
For our experiments, we split the dataset introduced in Sec-
tion 3.1 into training, development and testing, with 80%,
10% and 10% of the original size, respectively. The data
are split by accounts rather than data size, meaning that no
user accounts in one of the dataset will appear in another.
This ensures that the information used in training will not
be repeated in the evaluation datasets. An overview of the
datasets is shown in Table 4 (we refer the reader to Sec-
tion 3.1 for a discussion about why balancing of the data is
necessary).

Dataset Accounts Suspended Regular
Training 133,312 66,656 66,656
Development 16,664 8,332 8,332
Testing 16,666 8,333 8,333
Total 166,642 83,321 83,321

Table 4: The number of user accounts for training, develop-
ment and testing datasets.

5.2 Classification Models
SVM: Similar to Sculley and Wachman (2007), we use n-
grams as input to a linear support vector machine (SVM) for
classification. The classifier’s vocabulary is based on one-
and two-grams from the training set. Inspired by Wang et al.
(2017), we prevent over-fitting of our model by systemati-
cally reducing the size of the vocabulary. To eliminate stop
words, we remove the top 10% of most frequent n-grams in
the training data. From the remaining n-grams we select the
5,000 most frequent as the vocabulary. We try two variants
of feature representations: In SVMTF , each term is repre-
sented by its frequency in the document. In SVMTF∗IDF ,
each term is represented by its frequency multiplied by its in-
verse document frequency (Jones 2004), which is estimated
using the training dataset.



CNN: We implement the model from Kim (2014). We apply
filters with widths three, four and five with kernel size 100
to the concatenated tweet stream of a user.

LSTM: The LSTM network is directly applied at the word
vector level. We compare uni-directional (LSTM) and bi-
directional (LSTMbi) models.

GRU: The GRU (Cho et al. 2014) is applied at the word
vector level. For this model we also compare uni-directional
(GRU) and bi-directional (GRUbi) versions.

CNN-LSTM: Similar to Seyler et al. (2020), this model has
a CNN layer applied on the tweet level and an LSTM applied
to the CNN output (see Section 4 for details).

BERT: Taken from Devlin et al. (2019), BERT is a state-
of-the-art language model that utilizes deep bi-directional
transformers. We use the BERTBASE model and utilize the
pre-trained model weights for uncased English text. Fine-
tuning for our task is performed using the training portion of
the dataset for four epochs. The model with the best perfor-
mance on the development set is used for testing.

5.3 Model Implementation
We implemented all neural network models in the Pad-
dlePaddle platform4. We used Scikit-learn 0.19.1 for
the SVM models. We chose the rectified linear unit
(ReLU) (Dahl, Sainath, and Hinton 2013): relu(x) =
max(x, 0), as the activation function for all neural network
nodes except the single neuron for prediction. For the pre-
diction layer, we chose the sigmoid function: sigmoid(z) =
1/(1 + e−z), which takes a real value input to an output
in a range from 0 to 1. We selected Adam (Kingma and
Ba 2015) as the kernel optimizer, binary cross-entropy as
the loss function, batch size of 32 and dropout probability
of 0.5. We use 200-dimensional Glove (Pennington, Socher,
and Manning 2014) word vectors trained on Twitter to ini-
tialize the word embeddings. For BERT we use the imple-
mentation from Wolf et al. (2019).

5.4 Temporal Discretization
When designing our experiments, an important decision to
make is how to represent and discretize time. We choose
to use tweets as a proxy for time for the following rea-
sons: Since tweets are posted sequentially in time, e.g.
time(tweeti) < time(tweeti+1), we can still infer the relative
temporal performance of our models. Thus, if model m1 can
detect a suspended account x tweets earlier than model m2,
we can infer that model m1 is better suited for early detec-
tion. This can be done independently of the actual amount
of time that has passed, which depends on the individual ac-
counts posting frequency.

Another reason for using tweets as a proxy for time is
that it gives fairer performance measurements, when time
is discretized, or “binned”. The problem originates in the
underlying temporal distributions of the datapoints, which
makes it impossible to find bins of equal size when time is
discretized evenly. For example, if we decide to choose bins

4https://www.paddlepaddle.org.cn/

of one hour for our experiments, it will happen that some
of the bins have more or less datapoints than others. This
results in the performance measurements being distorted, as
bins with only one correctly classified datapoint will show
an accuracy of 100%, for instance.

We acknowledge that tweets are an imperfect represen-
tation of time. However, for the reasons mentioned above,
we argue that temporal discretization based on tweets is still
suitable for performance comparison of different classifica-
tion models in our problem setting.

5.5 Minimize Textual Amount Exploited
In this experiment we train classification models by vary-
ing the amounts of tweets that are shown to the classifier at
inference time. Our goal is to find the minimum amount of
textual information needed to make reliable predictions. In a
real-world setting, it is crucial to predict account suspension
using as little information as possible, in order to contain
the damage that a suspended account can cause. This exper-
iment can also be seen as an investigation in the predictive
power of our machine learning models, as more robust mod-
els make better predictions with fewer data.

In our experiments, we investigate the performance of our
models from a minimum to a maximum amount of informa-
tion. Since our application is within the realm of social me-
dia, we set our minimum and maximum to the two and 50
last posts of an account, respectively. We also show the im-
mediate steps of size five and plot the performance in terms
of prediction accuracy.

5.6 Early Detection
The experiment in the previous section explores the mini-
mum amount of textual information needed. Even though
this gives us a good way of estimating how quickly our clas-
sifiers can make predictions, it does not tell how early an
account can be detected for suspension. It is obvious that a
classifier which detects suspended accounts earlier is better
suited for application in real-world settings. Bearing this in
mind, we design the experiment to compare different clas-
sifiers and to give an estimate for how early reliable predic-
tions can be made. We therefore choose to regard tweets im-
mediately before account suspension as the “easiest” prob-
lem setting. The earlier in time the tweets were posted the
harder the problem becomes. However, at the same time the
classifier becomes more useful, since it can predict account
suspension as a future event rather than a retrospective one.

To simulate this predictive task, we choose to employ a
sliding window approach that moves backwards in time. Us-
ing a window of size W messages ensures that the model
has enough data to base its prediction on. The task is made
harder by sliding the window, starting from the time point
of account suspension to an earlier time point. The sliding
is done with a step size of s messages, applied i times. This
way we simulate a classifier observing only W messages,
i ∗ s messages before account suspension. If i ∗ s is larger
than 0, the classifier predicts suspension occurring in the fu-
ture.
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Figure 2: Performance of different classification models.

For our experiments, we set the window size W to 10,
based on the results of the previous experiment in Sec-
tion 5.5. The window is moved backwards up to the 50th

to last message. We show the performance in terms of pre-
diction accuracy and F1 score for sliding windows, with a
step size s of five messages and 0 ≤ i < 9.

6 Experiment Results
We now evaluate different classification models along the
dimensions of minimizing the exploited amount of textual
information and early detection.

6.1 Comparison of Different Models
In Figure 2, we compare how different models perform when
they are presented with varying amounts of information.
We find that CNN, CNN-LSTM, SVMTF and SVMTF∗IDF

seem to perform most robustly, having good performance for
only two tweets around 0.7 accuracy and increasing perfor-
mance when adding up to 15 tweets. All five models experi-
ence few performance changes after 15 tweets, which leads
us to believe that a window of 10-15 tweets is the sweet spot
in terms of classification performance. It should be noted
that although performance hovers around 0.7 when the mod-
els are only presented with two tweets, it shows that even
small amounts of text give strong signals to the model. CNN
and CNN-LSTM outperform the SVM-based models for all
data points, reaching a maximum performance of 0.8122 and
0.8129.

Interestingly, the LSTM and GRU models perform sub-
par for small amounts of tweets. This might be due to the fact
that RNN based models perform better for longer sequences
of text. This reasoning would also explain their strong in-
crease once more text is shown to the model. Surprisingly,
the BERT model can only outperform the weak GRU and
LSTMbi models, when less than 10 tweets are observed. The
performance peaks when about 10 tweets are observed but
then slowly decreases. We hypothesize that the restriction of
input tokens in the BERT model prevents it from benefiting
from the additionally observed tweets. Another reason for
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Figure 3: Performance of statistical features.

the low performance might be the frequency of misspelled
words in social media text. Even though BERT uses subword
embeddings for out-of-vocabulary tokens, it might not be as
effective as our word embeddings that have been pre-trained
on in-domain (i.e., Twitter) text. We further find that “sim-
ple” textual signals, as captured by SVM and CNN, seem to
be sufficient for this classification task. Thus, the additional
expressiveness of the language model that is introduced by
BERT does not seem helpful. For the aforementioned rea-
sons, we will focus on CNN and CNN-LSTM in our subse-
quent experiments.

When comparing the SVM baselines, there seems to be al-
most no difference in performance. However, SVMTF per-
forms slightly better for very small amounts of data, since it
outperforms SVMTF∗IDF for data points -2 and -5. Follow-
ing this observation, we evaluate SVMTF in the subsequent
experiments.

6.2 Features from Statistical Analysis
From Section 3, we select the most promising features,
which are: (1) average time between tweets (time) (2) av-
erage number of URLs (url) (3) vocabulary size (vocab) and
(4) percentage of tweets that contain words obtained with
FB-LDA (fblda). In Figure 3, we test the individual im-
pact of each feature, as well as concatenating all features
(all) when added to the CNN model. We find time to be
the strongest feature since it performs equally or better than
the standard CNN model. Features url, vocab and fblda do
not increase the performance when added individually (this
might be because CNN related models have taken advan-
tage of this information already). However, when added to
time the performance can still be improved, especially when
more than ten tweets are used as input. Using all features the
model outperforms CNN with up to 1.43 percentage points.

6.3 Early Detection
The purpose of this experiment is to show how early we
can detect a future account suspension. As discussed in Sec-
tion 5.4, we measure time in terms of messages posted by



SVM CNN CNN+all CNN-LSTM CNN-LSTM+all
Window F1 P R F1 P R F1 P R F1 P R F1 P R
[-10, 0] .77 .79 .74 .7907 .82 .76 .7990** .83 .77 .8070 .81 .80 .8023 .83 .77
[-15, -5] .75 .76 .75 .7784 .79 .76 .7923** .80 .78 .7892 .76 .81 .7968** .80 .78

[-20, -10] .75 .75 .75 .7680 .77 .76 .7842** .77 .79 .7762 .74 .81 .7810** .78 .78
[-25, -15] .74 .73 .75 .7592 .75 .77 .7785** .76 .80 .7677 .72 .82 .7805** .77 .79
[-30, -20] .73 .71 .75 .7473 .72 .77 .7672** .73 .80 .7551 .69 .82 .7693** .73 .81
[-35, -25] .73 .67 .80 .7397 .68 .81 .7572** .69 .84 .7437 .66 .85 .7575** .68 .84
[-40, -30] .72 .64 .83 .7320 .65 .84 .7424** .65 .87 .7354 .63 .87 .7421* .65 .87
[-45, -35] .72 .62 .85 .7206 .62 .85 .7313** .62 .88 .7267 .61 .89 .7345** .63 .88
[-50, -40] .71 .61 .87 .7171 .61 .87 .7276** .61 .90 .7213 .60 .90 .7289 .61 .90

Table 5: Results for early detection. Statistical features significantly improve performance according to McNemar test with
p-value ≤ 0.05 (*) and p-value ≤ 0.01 (**).

how to post rss feeds to twitter ? <link> alternate to adwords campaigns try using <link> top 10 ghetto weddings ...
debt settlement advice - where to get free advice and find the <unk> can a personal loan help you with your finances ? ...
subscribe and find free teens <link> #admitit subscribe for free girls <link> #egibitow subscribe and find free teens...
rapid fat loss handbook <unk> meryl streep struggles to lose movie weight and tips that boost ...
atx computer cases spy equipment cell phones . visit us today and save <link> . home security cameras security camera systems ...
yupp u can watchh g.i. joe : the rise of cobra moviie online <link> #welovethenhs just watchhed the time traveler’s wife moviie ...
i rated a youtube video ( 5 out of 5 stars ) - - techno mix 2009 <unk> i favorited a youtube video ...
how domino ”s”, <unk> measures social media success : ” are my sales up ? am i making money ? am i having fun ? that ”s”, it ...

Table 6: A sample of false negative user accounts that were correctly identified by our method.
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Figure 4: Best performing models on early detection.

an account. In Figure 4, we compare the best performing
models from Section 6.1 and Section 6.2 for this task. The
most recent time point is at the origin of the plot, whereas
the furthest away time point is on the end of the x-axis.

All models perform worse the further we step back in
time, meaning that the task becomes more and more dif-
ficult. Again, we find that the SVM baselines are outper-
formed by the deep-learning models. Surprisingly, adding
the statistical features we introduced in Section 3 to the
SVM model results in a large performance decrease. How-
ever, the statistical features help both CNN and CNN-LSTM
models. The most significant gains are made when these fea-
tures are added to the CNN-LSTM model, which performs
best overall in this task. We find that predictions with this

model are quite reliable even up to 30 tweets in the past,
where the performance is still above 0.75 in terms of ac-
curacy. The accuracy ranges from 0.8134 to 0.668 for this
model. The CNN-based model performs slightly worse from
0.8057 to 0.661.

Table 5 lists F1, precision (P) and recall (R) scores of our
best performing models (we omitted SVM+all due to infe-
rior performance to SVM). For F1 scores, we observe a sim-
ilar pattern as for classification accuracy. The deep learning
models outperform SVM for all data points, but the differ-
ence becomes smaller the further we move into the past.
CNN-LSTM+all also seems to perform superior in terms
of F1 scores. Adding the statistical features to the CNN
model increases performance of each data point by an aver-
age of 1.4 percentage points. The biggest increases (close to
2 percentage points) can be seen between windows [-25,-15]
and [-30,-20]. Adding statistical features significantly im-
proves performance for all time points in the CNN model
(p-value ≤ 0.01 by McNemar test (Dietterich 1998)). Sim-
ilarly, adding statistical features to the CNN-LSTM model
significantly improves performance for time points within
windows [-15,-5] and [-45,-35]. We take this as evidence that
our features are especially effective on earlier data points
and hence suitable for early detection.

While further evaluating Precision and Recall in Table 5,
we find that both metrics improve in the CNN-based mod-
els, compared to SVM. Similar to our earlier observation,
the improvement is higher for windows less far in the past.
Interestingly, Precision suffers when the windows move fur-
ther into the past, whereas Recall increases. Adding the sta-
tistical features improves Precision and Recall for CNN. For
CNN+LSTM, it seems to improve Precision at the cost of a
minor reduction in Recall.



7 Error Analysis
We perform a manual error analysis on false negatives and
show concrete examples that were correctly identified by our
method. We find that there are a number of false negatives in
the dataset that our classifier correctly identified as positive.
In Table 6 we give the output of eight example accounts that
we manually identified as false negatives among a set of 100
randomly selected not-suspended accounts. In our manual
investigation we find seven more of such accounts, which
leads us to estimate that roughly 15% of accounts found by
our classifier are wrongly labeled as benign in the gold stan-
dard and should be suspended by Twitter.

Upon manual investigation, we find that the topics and
motives of these accounts are quite variable but the major-
ity of them could be categorized as spam. We also find that
in some accounts, which our classifier labels as suspended,
users that talk very vulgarly and derogatory. It is surpris-
ing that these accounts were not caught by the social me-
dia platform, since a simple list of curse words would have
identified them. To summarize, we regard these findings as
preliminary evidence that a non-insignificant amount of ac-
counts in our dataset are false negatives (i.e. mislabeled) in
the gold standard (i.e. ground truth from Twitter).

We further categorize 100 random accounts that are la-
beled as suspended by the ground truth. Manual evaluation
is necessary, since the reason for account suspension is not
known from the label. We chose the following categories and
annotation guidelines:

• Spam: promotions, download links, etc.
• Offensive Language: crude language and insults
• News: current events, weather forecasts, etc.
• Adult: suggestive language, e.g., “xxx”
• Spiritual: religious or preachy language
• Benign: regular user account
• Unsure: no obvious reason, or mix of categories

Spam Offen. News Adult Spirit. Ben. Uns.
TP 45 6 4 6 6 6 6
FP 3 2 1 0 2 9 4
Ratio 48% 8% 5% 6% 8% 15% 10%
FDR .06 .25 .20 0 .25 .60 .40

Table 7: Categories of suspended accounts.

Table 7 shows the results. Since we only investigate ac-
counts labeled as suspended, we show true positives (TP),
false positives (FP), percentage of accounts of a certain cat-
egory (Ratio) and false discovery rate (FDR), which is de-
fined as FP

FP+TP . From the table we find that almost half of
the accounts are spam accounts, which our classifier identi-
fies robustly, with an FDR of 0.06. Offensive, spiritual and
news account make up a combined 21% of accounts and are
classified with 0.20 to 0.25 FDR. No misclassification hap-
pens for the adult category. We speculate that these accounts
can be found easily, due to their very distinct vocabulary
(e.g., “xxx”). The classes with the highest FDR are benign
and unsure, with 0.6 and 0.4 FDR, respectively. We argue,

that the higher errors in these accounts are due to the gen-
eral difficulty of distinguishing them, which is a hard task
for humans, as well.

8 Conclusion and Future Work
We performed a linguistic and statistic analysis into sus-
pended social media accounts and showed that suspended
accounts differ from regular accounts in behavioral and
content-related aspects when they post textual messages.
Our linguistic study highlighted the manifold textual differ-
ences of suspended accounts, which often discuss topics that
are measurably different from benign accounts. Using ad-
vanced topic modeling, we were able to automatically derive
a suspended account spam word list, which we showed to
be much better at distinguishing suspended from benign ac-
counts compared to existing word lists targeted exclusively
at detecting spam. From our statistical study, we derive
four features and showed how they significantly improve
a deep-learning-based suspended account prediction frame-
work. Our method requires only a small amount of textual
information (about ten short sentences/tweets) along with
their timestamps as input. In our experiments, we showed
that this signal is sufficient to perform reliable predictions
(with over 80% accuracy in some cases) and that our model
is able to detect suspended accounts earlier than the social
media platform. In our manual error analysis, we find that
our classifier performs robustly over various categories of
suspended accounts.

In what follows, we present a non-exhaustive list of future
directions enabled by this work:
• Real-word deployment: In one potential application, our

method would be used to generate alarms about possi-
ble account suspension in the future, so that humans can
examine them. This system could be deployed on both
“sides” of social media: (1) the platform provider (e.g.,
Twitter) could incorporate our models to inform its con-
tent moderators of high-risk accounts and (2) users of
a social media platform could be warned before posting
critical content. Even though there may be inevitable false
alarms, our method exhibits sufficient accuracy to be prac-
tically useful.

• Further study the automatic creation of spam word
dictionaries: In this work we have shown that FB-LDA
can be leveraged for creating spam word lists. In the fu-
ture, we can envision a more principled study into hyper-
parameters, such as, number of topics and optimal cut-off
points for number of words within a topic. It would also be
interesting to see how efficient the generated spam word
list would perform on a spam detection task. Therefore, an
evaluation on spam detection datasets would be desirable.

• Incorporation of global lexical information: Our cur-
rent methods are limited in the way they only consider
local lexical information (besides from the spam word
dictionary). Statistical and textual features are derived di-
rectly from a user account and do not consider the “greater
picture”, meaning the entire document collection. In this
way, our models potentially miss patters that are evident
across multiple accounts but are hidden when accounts



are examined in isolation. We therefore assume that there
is much potential in extending the existing work using
global features, for instance, using topic modeling.

• Incorporate features based on social graph: Related to
the previous observation where we pointed out that ac-
counts are classified locally, we can imagine incorporat-
ing follower-followee relationships into the model. These
signals based on the social graph should be somewhat
orthogonal to our text-based features and their incorpo-
ration could lead to potentially further performance im-
provements.

• Domain Adaptation: Another area for improvement is
the domain adaption of our classification models. In this
work, “out-of-the-box” word embeddings trained on gen-
eral text corpora are used, but they can be less effective
when applied to domain-specific settings. Incorporating a
method such as domain adaptation through backpropaga-
tion (Ganin and Lempitsky 2015), or domain adaptation
of word embeddings (Seyler and Zhai 2020), could fur-
ther benefit our existing classification framework.

• Understand evasion tactics: In the literature, there cur-
rently exists only limited understanding of how text-based
detection techniques of social media abuse can be evaded.
As bad actors are constantly modifying their behavior to
fool detection systems, it would be crucial to further study
their malicious actions over time and test the robustness of
our text-based features in an ever-changing environment.
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Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT), 4171–4186. Minneapolis, MN.
Dietterich, T. G. 1998. Approximate Statistical Tests For
Comparing Supervised Classification Learning Algorithms.
Neural Comput. 10(7): 1895–1923.
Egele, M.; Stringhini, G.; Kruegel, C.; and Vigna, G. 2017.
Towards Detecting Compromised Accounts on Social Net-
works. IEEE Trans. Dependable Secur. Comput. 14(4): 447–
460.
Ganin, Y.; and Lempitsky, V. S. 2015. Unsupervised Do-
main Adaptation by Backpropagation. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML), 1180–1189. Lille, France.
Grier, C.; Thomas, K.; Paxson, V.; and Zhang, C. M. 2010.
@spam: the underground on 140 characters or less. In Pro-
ceedings of the 17th ACM Conference on Computer and
Communications Security (CCS), 27–37. Chicago, IL.
Gupta, S.; Khattar, A.; Gogia, A.; Kumaraguru, P.; and
Chakraborty, T. 2018. Collective Classification of Spam
Campaigners on Twitter: A Hierarchical Meta-Path Based
Approach. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web (WWW), 529–538. Lyon,
France.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Comput. 9(8): 1735–1780.
Jones, K. S. 2004. A statistical interpretation of term speci-
ficity and its application in retrieval. J. Documentation
60(5): 493–502.
Karimi, H.; VanDam, C.; Ye, L.; and Tang, J. 2018. End-
to-End Compromised Account Detection. In Proceedings of
the IEEE/ACM 2018 International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), 314–
321. Barcelona, Spain.
Khan, M. U. S.; Ali, M.; Abbas, A.; Khan, S. U.; and
Zomaya, A. Y. 2018. Segregating Spammers and Unso-
licited Bloggers from Genuine Experts on Twitter. IEEE
Trans. Dependable Secur. Comput. 15(4): 551–560.
Kim, Y. 2014. Convolutional Neural Networks for Sen-
tence Classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 1746–1751. Doha, Qatar.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Proceedings of the 3rd Inter-
national Conference on Learning Representations (ICLR).
San Diego, CA.
Lee, K.; Caverlee, J.; and Webb, S. 2010. Uncovering social
spammers: social honeypots + machine learning. In Pro-
ceeding of the 33rd International ACM SIGIR Conference



on Research and Development in Information Retrieval (SI-
GIR), 435–442. Geneva, Switzerland.
Martı́nez-Romo, J.; and Araujo, L. 2013. Detecting mali-
cious tweets in trending topics using a statistical analysis of
language. Expert Syst. Appl. 40(8): 2992–3000.
Nilizadeh, S.; Labreche, F.; Sedighian, A.; Zand, A.; Fer-
nandez, J. M.; Kruegel, C.; Stringhini, G.; and Vigna, G.
2017. POISED: Spotting Twitter Spam Off the Beaten
Paths. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 1159–
1174. Dallas, TX.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global Vectors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1532–1543. Doha, Qatar.
Ruan, X.; Wu, Z.; Wang, H.; and Jajodia, S. 2016. Profiling
Online Social Behaviors for Compromised Account Detec-
tion. IEEE Trans. Inf. Forensics Secur. 11(1): 176–187.
Sculley, D.; and Wachman, G. 2007. Relaxed online SVMs
for spam filtering. In Proceedings of the 30th Annual Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), 415–422. Amster-
dam, The Netherlands.
Seyler, D.; Li, L.; and Zhai, C. 2020. Semantic Text Analy-
sis for Detection of Compromised Accounts on Social Net-
works. In Proceedings of the 2020 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining (ASONAM), 417–424. Virtual Event.
Seyler, D.; Shen, J.; Xiao, J.; Wang, Y.; and Zhai, C. 2020.
Leveraging Personalized Sentiment Lexicons for Sentiment
Analysis. In Proceedings of the 2020 ACM SIGIR Inter-
national Conference on the Theory of Information Retrieval
(ICTIR), 109–112. Virtual Event, Norway.
Seyler, D.; and Zhai, C. 2020. A Study of Methods for the
Generation of Domain-Aware Word Embeddings. In Pro-
ceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval (SI-
GIR), 1609–1612. Virtual Event, China.
Sun, N.; Lin, G.; Qiu, J.; and Rimba, P. 2020. Near Real-
Time Twitter Spam Detection with Machine Learning Tech-
niques. International Journal of Computers and Applica-
tions 1–11.
Tan, S.; Li, Y.; Sun, H.; Guan, Z.; Yan, X.; Bu, J.; Chen, C.;
and He, X. 2014. Interpreting the Public Sentiment Vari-
ations on Twitter. IEEE Trans. Knowl. Data Eng. 26(5):
1158–1170.
Thomas, K.; Grier, C.; Song, D.; and Paxson, V. 2011. Sus-
pended accounts in retrospect: an analysis of twitter spam.
In Proceedings of the 11th ACM SIGCOMM Internet Mea-
surement Conference (IMC), 243–258. Berlin, Germany.
Thomas, K.; Li, F.; Grier, C.; and Paxson, V. 2014. Conse-
quences of Connectivity: Characterizing Account Hijacking
on Twitter. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
489–500. Scottsdale, AZ.

Twitter. 2021. About suspended accounts. https:
//help.twitter.com/en/managing-your-account/suspended-
twitter-accounts. Accessed: 2021-04-12.
VanDam, C.; Masrour, F.; Tan, P.; and Wilson, T. 2019.
You have been CAUTE!: early detection of compromised
accounts on social media. In Proceedings of International
Conference on Advances in Social Networks Analysis and
Mining (ASONAM), 25–32. Vancouver, Canada.
VanDam, C.; Tan, P.; Tang, J.; and Karimi, H. 2018.
CADET: A Multi-View Learning Framework for Compro-
mised Account Detection on Twitter. In Proceedings of the
IEEE/ACM 2018 International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), 471–478.
Barcelona, Spain.
VanDam, C.; Tang, J.; and Tan, P. 2017. Understanding
compromised accounts on Twitter. In Proceedings of the In-
ternational Conference on Web Intelligence (WI), 737–744.
Leipzig, Germany.
Velayudhan, S. P.; and Bhanu, S. M. S. 2020. UbCadet: de-
tection of compromised accounts in twitter based on user be-
havioural profiling. Multim. Tools Appl. 79(27-28): 19349–
19385.
Volkova, S.; and Bell, E. 2017. Identifying Effective Sig-
nals to Predict Deleted and Suspended Accounts on Twitter
Across Languages. In Proceedings of the Eleventh Inter-
national Conference on Web and Social Media (ICWSM),
290–298. Montréal, Canada.
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