

Semantic Text Analysis for Detection of Compromised Accounts on Social Networks

Dominic Seyler (<u>dseyler2@Illinois.edu</u>) Lunan Li (<u>lunanli3@illinois.edu</u>) ChengXiang Zhai (<u>czhai@Illinois.edu</u>) University of Illinois at Urbana-Champaign, USA

Motivation

Motivation

- **Compromised accounts:** legitimate accounts that an adversary takes control over for gaining financial profit or spreading misinformation.
- Compromised accounts are <u>more valuable</u> for hackers:
 - Harder to detect because they show characteristics of legitimate accounts.
 - Hackers can exploit the trust network the legitimate user has created.
- Issues related to compromised accounts:
 - Detection can take up to five days, with 60% of takeovers lasting entire day.
 - In 2013, over 250k Twitter accounts were compromised; issue remains today.
 - 21% of victims of account compromise abandon social media platform.
- Goal: Detect compromised accounts on social media platforms.

Talk Outline

- 1. Threat Model
- 2. Detection Framework
- 3. Creating Ground Truth Dataset
- 4. Feasibility Analysis
- 5. Experiments
- 6. Conclusion

Threat Model

• Adversary's goal: Inject textual output into a benign account to mask its origin and leverage the user's influence network.

Observation: adversary's textual output will deviate from user's output.

Detection Framework

- Create language model for attacker (θ^{Attack}) and user (θ^{User}).
- Sample random t_{begin} , t_{end} and measure difference in distributions.
- Use difference as a feature in classification framework.

Instantiation of Detection Framework

Creating Ground Truth Dataset

- No dataset available: Simulate account attacks according to our threat model.
- Use Twitter crawl [1] and switch part of a user's twitter stream with tweets from another user to artificially create a compromised account.
- Begin and end of account take-over are chosen at random.
- Harder than the "real" problem, since two regular twitter users will use less discriminative language than a user and an adversary.

Feasibility Analysis

- Find evidence:
 - (1) compromised user accounts do exhibit higher KL-divergence compared to benign accounts.
 - (2) average KL-divergence can be estimated by randomly sampling a certain number of points with different begin-end dates.
- Methodology:
 - Select 495 users at random.
 - Calculate KL-divergence for all possible combinations of t_{begin} and t_{end} .

(1) Compromised User Accounts Exhibit Higher KL-divergence

Benign

(2) Estimate Average KL-divergence Using Random Sampling

- Plot actual average KLdivergence against the average sampled KL-divergence.
- Average KL-div. higher for compromised accounts.
- For sample rates < 81 minimal deviations in approximation (+/-0.01).

(2) Estimate Average KL-divergence Using Random Sampling

 Measure Mean Squared Error (mse) as:

 $\frac{1}{n}\sum_{u\in U^{test}}(sampled_avg(u) - actual_avg(u))^2$

- For sample rates < 50 errors over 0.07 and 0.06.
- For sample rate < 101 mse is close to 0.
- Conclusion: Sample rate of 50 to 100 is sufficient for experiments.

Experiments

- Research Questions
 - 1. How does the proposed language model feature compare to general text classification features? Can they be combined?
 - 2. How does the language model feature perform in comparison to other compromised account detection methods?
 - 3. How effective is our method on a real (non-simulated) dataset, when trained using simulated data?

Experimental Design

- Dataset:
 - Simulation dataset using a Twitter crawl [1] based on our thread model.
 - Resulting dataset contains 99,912 user accounts with close to 129.5 million tweets (dataset is balanced).
- Baselines:
 - General text representations: (1) word count, (2) TF*IDF and (3) Doc2Vec.
 - Existing compromised account detection methods: COMPA [2]; VanDam [3]
- Classification Framework:
 - Support Vector Machine (SVM) with ten-fold cross validation.

^[1] Yang and Leskovec 2011. "Patterns of temporal variation in online media." In WSDM.

^[2] Egele et al. 2013. "Compa: Detecting compromised accounts on social networks." In NDSS.

^[3] VanDam et al. 2017. "Understanding compromised accounts on twitter." In Web Intelligence.

Ablation Study

Measure	All	Max	Min	Mean	Var.
Accuracy	0.80	0.59	0.76	0.75	0.48
F_1	0.78	0.57	0.72	0.72	0.35
Precision	0.90	0.61	0.87	0.83	0.47
Recall	0.68	0.53	0.61	0.64	0.27

Ablation study using different measures.

- Maximum performance over all metrics achieved when all features are used.
- High precision (0.9) and accuracy (0.8).
- *Minimum* and *Mean* seem to be strongest features.

Comparison to General Text Representations

%	COUNT	TF*IDF	Doc2Vec	Doc2Vec	LM	LM +	LM +	all
				+		TF^*IDF	Doc2Vec	
				TF^*IDF				
50	0.53	0.56	0.71	0.72	0.80	0.81	0.87	0.87
25	0.53	0.55	0.69	0.69	0.75	0.75	0.82	0.82
10	0.52	0.54	0.63	0.63	0.65	0.65	0.70	0.71
5	0.52	0.53	0.59	0.59	0.59	0.59	0.62	0.62
RND	0.53	0.55	0.68	0.68	0.74	0.74	0.80	0.80

Accuracy for different features and their combinations.

- LM stand-alone outperforms all general text representations.
- Adding Doc2Vec to LM results the highest improvements.
- Best performance is achieved when features are combined.

Comparison to Related Methods

Model	Accuracy	F_1	Precision	Recall
COMPA	0.62	0.60	0.64	0.56
VanDam	0.50	0.47	0.50	0.45
LM	0.74	0.70	0.81	0.61
improvement LM over best baseline	19.4%	16.7%	26.6%	8.9%
LM + COMPA	0.75	0.73	0.81	0.66
LM + VanDam	0.74	0.71	0.82	0.62
LM + COMPA + VanDam	0.76	0.73	0.81	0.67
improvement over LM	2.7%	4.3%	1.2%	9.8%
LM + Doc2Vec + TF*IDF + COMPA + VanDam	0.81	0.79	0.85	0.75
improvement when adding standard features	6.6%	8.2%	4.9%	11.9%

- LM stand-alone outperforms all baseline methods.
- Combining methods is beneficial.
- Best performance is achieved, when standard features are added.

Effectiveness on Non-Simulated Data

• Manual Analysis: Apply algorithm to real-world data and investigate accounts with highest probability of being compromised.

Category	Count	Status	Count	
News	5	Abandoned	7	
Spam	4	Active	6	
Re-tweet Bot	2	Deleted	4	
Compromised	1	Protected	2	
Regular	7	Suspended	1	
Unknown	1			

- If trained on real data, detection of more suspended accounts expected.
- Our algorithm can detect "unusual" accounts and users.

Conclusion

- Novel general framework for detecting compromised accounts using semantic text analysis.
- Instantiation of framework was shown to be effective.
- Proposed language model features are most effective and show improvement when added on top of other methods.
- Our features capture signals that exiting methods are missing.
- Model can be trained without any human involvement (using simulation) to detect "unusual" accounts.

Semantic Text Analysis for Detection of Compromised Accounts on Social Networks

Dominic Seyler (<u>dseyler2@Illinois.edu</u>) Lunan Li (<u>lunanli3@illinois.edu</u>) ChengXiang Zhai (<u>czhai@Illinois.edu</u>)

University of Illinois at Urbana-Champaign, USA

